Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Philos Trans R Soc Lond B Biol Sci ; 378(1890): 20220475, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37778383

RESUMO

Mice fully deficient in peptidylarginine deiminase 4 (PAD4) enzyme have preserved cardiac function and reduced collagen deposition during ageing. The cellular source of PAD4 is hypothesized to be neutrophils, likely due to PAD4's involvement in neutrophil extracellular trap release. We investigated haematopoietic PAD4 impact on myocardial remodelling and systemic inflammation in cardiac ageing by generating mice with Padi4 deletion in circulating neutrophils under the MRP8 promoter (Ne-PAD4-/-), and ageing them for 2 years together with littermate controls (PAD4fl/fl). Ne-PAD4-/- mice showed protection against age-induced fibrosis, seen by reduced cardiac collagen deposition. Echocardiography analysis of structural and functional parameters also demonstrated preservation of both systolic and diastolic function with MRP8-driven PAD4 deletion. Furthermore, cardiac gene expression and plasma cytokine levels were evaluated. Cardiac genes and plasma cytokines involved in neutrophil recruitment were downregulated in aged Ne-PAD4-/- animals compared to PAD4fl/fl controls, including decreased levels of C-X-C ligand 1 (CXCL1). Our data confirm PAD4 involvement from circulating neutrophils in detrimental cardiac remodelling, leading to cardiac dysfunction with old age. Deletion of PAD4 in MRP8-expressing cells impacts the CXCL1-CXCR2 axis, known to be involved in heart failure development. This supports the future use of PAD4 inhibitors in cardiovascular disease. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Camundongos , Animais , Remodelação Ventricular , Armadilhas Extracelulares/genética , Armadilhas Extracelulares/metabolismo , Citocinas/metabolismo , Colágeno/metabolismo , Camundongos Endogâmicos C57BL
3.
Front Cardiovasc Med ; 9: 964512, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324747

RESUMO

Recovered COVID-19 patients often display cardiac dysfunction, even after a mild infection. Most current histological results come from patients that are hospitalized and therefore represent more severe outcomes than most COVID-19 patients face. To overcome this limitation, we investigated the cardiac effects of SARS-CoV-2 infection in a hamster model. SARS-CoV-2 infected hamsters developed diastolic dysfunction after recovering from COVID-19. Histologically, increased cardiomyocyte size was present at the peak of viral load and remained at all time points investigated. As this increase is too rapid for hypertrophic remodeling, we found instead that the heart was oedemic. Moreover, cardiomyocyte swelling is associated with the presence of ischemia. Fibrin-rich microthrombi and pericyte loss were observed at the peak of viral load, resulting in increased HIF1α in cardiomyocytes. Surprisingly, SARS-CoV-2 infection inhibited the translocation of HIF1α to the nucleus both in hamster hearts, in cultured cardiomyocytes, as well as in an epithelial cell line. We propose that the observed diastolic dysfunction is the consequence of cardiac oedema, downstream of microvascular cardiac ischemia. Additionally, our data suggest that inhibition of HIF1α translocation could contribute to an exaggerated response upon SARS-CoV-2 infection.

4.
Circ Heart Fail ; 14(1): e006979, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33464950

RESUMO

BACKGROUND: Chronic pressure overload predisposes to heart failure, but the pathogenic role of microvascular endothelial cells (MiVEC) remains unknown. We characterized transcriptional, metabolic, and functional adaptation of cardiac MiVEC to pressure overload in mice and patients with aortic stenosis (AS). METHODS: In Tie2-Gfp mice subjected to transverse aortic constriction or sham surgery, we performed RNA sequencing of isolated cardiac Gfp+-MiVEC and validated the signature in freshly isolated MiVEC from left ventricle outflow tract and right atrium of patients with AS. We next compared their angiogenic and metabolic profiles and finally correlated molecular and pathological signatures with clinical phenotypes of 42 patients with AS (50% women). RESULTS: In mice, transverse aortic constriction induced progressive systolic dysfunction, fibrosis, and reduced microvascular density. After 10 weeks, 25 genes predominantly involved in matrix-regulation were >2-fold upregulated in isolated MiVEC. Increased transcript levels of Cartilage Intermediate Layer Protein (Cilp), Thrombospondin-4, Adamtsl-2, and Collagen1a1 were confirmed by quantitative reverse transcription polymerase chain reaction and recapitulated in left ventricle outflow tract-derived MiVEC of AS (P<0.05 versus right atrium-MiVEC). Fatty acid oxidation increased >2-fold in left ventricle outflow tract-MiVEC, proline content by 130% (median, IQR, 58%-474%; P=0.008) and procollagen secretion by 85% (mean [95% CI, 16%-154%]; P<0.05 versus right atrium-MiVEC for all). The altered transcriptome in left ventricle outflow tract-MiVEC was associated with impaired 2-dimensional-vascular network formation and 3-dimensional-spheroid sprouting (P<0.05 versus right atrium-MiVEC), profibrotic ultrastructural changes, and impaired diastolic left ventricle function, capillary density and functional status, especially in female AS. CONCLUSIONS: Pressure overload induces major transcriptional and metabolic adaptations in cardiac MiVEC resulting in excess interstitial fibrosis and impaired angiogenesis. Molecular rewiring of MiVEC is worse in women, compromises functional status, and identifies novel targets for intervention.


Assuntos
Estenose da Valva Aórtica/genética , Vasos Coronários/metabolismo , Células Endoteliais/metabolismo , Átrios do Coração/metabolismo , Ventrículos do Coração/metabolismo , Microvasos/metabolismo , Proteínas ADAMTS/genética , Idoso , Animais , Aorta , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Estenose da Valva Aórtica/cirurgia , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Constrição Patológica , Vasos Coronários/patologia , Modelos Animais de Doenças , Células Endoteliais/patologia , Proteínas da Matriz Extracelular/genética , Ácidos Graxos/metabolismo , Feminino , Perfilação da Expressão Gênica , Átrios do Coração/patologia , Implante de Prótese de Valva Cardíaca , Ventrículos do Coração/patologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Densidade Microvascular , Microvasos/patologia , Pró-Colágeno/metabolismo , Prolina/metabolismo , Pirofosfatases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA , Trombospondinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA