Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Biol ; 7(3): e1000049, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19750121

RESUMO

Developing embryos exhibit a robust capability to reduce phenotypic variations that occur naturally or as a result of experimental manipulation. This reduction in variation occurs by an epigenetic mechanism called canalization, a phenomenon which has resisted understanding because of a lack of necessary molecular data and of appropriate gene regulation models. In recent years, quantitative gene expression data have become available for the segment determination process in the Drosophila blastoderm, revealing a specific instance of canalization. These data show that the variation of the zygotic segmentation gene expression patterns is markedly reduced compared to earlier levels by the time gastrulation begins, and this variation is significantly lower than the variation of the maternal protein gradient Bicoid. We used a predictive dynamical model of gene regulation to study the effect of Bicoid variation on the downstream gap genes. The model correctly predicts the reduced variation of the gap gene expression patterns and allows the characterization of the canalizing mechanism. We show that the canalization is the result of specific regulatory interactions among the zygotic gap genes. We demonstrate the validity of this explanation by showing that variation is increased in embryos mutant for two gap genes, Krüppel and knirps, disproving competing proposals that canalization is due to an undiscovered morphogen, or that it does not take place at all. In an accompanying article in PLoS Computational Biology (doi:10.1371/journal.pcbi.1000303), we show that cross regulation between the gap genes causes their expression to approach dynamical attractors, reducing initial variation and providing a robust output. These results demonstrate that the Bicoid gradient is not sufficient to produce gap gene borders having the low variance observed, and instead this low variance is generated by gap gene cross regulation. More generally, we show that the complex multigenic phenomenon of canalization can be understood at a quantitative and predictive level by the application of a precise dynamical model.


Assuntos
Blastoderma/metabolismo , Drosophila melanogaster/genética , Epigênese Genética , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Animais , Blastoderma/embriologia , Padronização Corporal/genética , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Meio Ambiente , Proteínas Ativadoras de GTPase/genética , Variação Genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição Kruppel-Like/deficiência , Fatores de Transcrição Kruppel-Like/genética , Modelos Teóricos , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Transativadores/genética , Transativadores/metabolismo
2.
PLoS Comput Biol ; 5(3): e1000303, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19282965

RESUMO

The variation in the expression patterns of the gap genes in the blastoderm of the fruit fly Drosophila melanogaster reduces over time as a result of cross regulation between these genes, a fact that we have demonstrated in an accompanying article in PLoS Biology (see Manu et al., doi:10.1371/journal.pbio.1000049). This biologically essential process is an example of the phenomenon known as canalization. It has been suggested that the developmental trajectory of a wild-type organism is inherently stable, and that canalization is a manifestation of this property. Although the role of gap genes in the canalization process was established by correctly predicting the response of the system to particular perturbations, the stability of the developmental trajectory remains to be investigated. For many years, it has been speculated that stability against perturbations during development can be described by dynamical systems having attracting sets that drive reductions of volume in phase space. In this paper, we show that both the reduction in variability of gap gene expression as well as shifts in the position of posterior gap gene domains are the result of the actions of attractors in the gap gene dynamical system. Two biologically distinct dynamical regions exist in the early embryo, separated by a bifurcation at 53% egg length. In the anterior region, reduction in variation occurs because of stability induced by point attractors, while in the posterior, the stability of the developmental trajectory arises from a one-dimensional attracting manifold. This manifold also controls a previously characterized anterior shift of posterior region gap domains. Our analysis shows that the complex phenomena of canalization and pattern formation in the Drosophila blastoderm can be understood in terms of the qualitative features of the dynamical system. The result confirms the idea that attractors are important for developmental stability and shows a richer variety of dynamical attractors in developmental systems than has been previously recognized.


Assuntos
Blastoderma/fisiologia , Padronização Corporal/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Drosophila/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Modelos Biológicos , Fatores de Transcrição/metabolismo , Animais , Simulação por Computador , Drosophila/anatomia & histologia
3.
Nature ; 430(6997): 368-71, 2004 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15254541

RESUMO

Morphogen gradients contribute to pattern formation by determining positional information in morphogenetic fields. Interpretation of positional information is thought to rely on direct, concentration-threshold-dependent mechanisms for establishing multiple differential domains of target gene expression. In Drosophila, maternal gradients establish the initial position of boundaries for zygotic gap gene expression, which in turn convey positional information to pair-rule and segment-polarity genes, the latter forming a segmental pre-pattern by the onset of gastrulation. Here we report, on the basis of quantitative gene expression data, substantial anterior shifts in the position of gap domains after their initial establishment. Using a data-driven mathematical modelling approach, we show that these shifts are based on a regulatory mechanism that relies on asymmetric gap-gap cross-repression and does not require the diffusion of gap proteins. Our analysis implies that the threshold-dependent interpretation of maternal morphogen concentration is not sufficient to determine shifting gap domain boundary positions, and suggests that establishing and interpreting positional information are not independent processes in the Drosophila blastoderm.


Assuntos
Padronização Corporal , Drosophila melanogaster/embriologia , Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Animais , Blastoderma/citologia , Blastoderma/metabolismo , Difusão , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Feminino , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
4.
Dev Biol ; 313(2): 844-62, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18067886

RESUMO

Here we characterize the expression of the full system of genes which control the segmentation morphogenetic field of Drosophila at the protein level in one dimension. The data used for this characterization are quantitative with cellular resolution in space and about 6 min in time. We present the full quantitative profiles of all 14 segmentation genes which act before the onset of gastrulation. The expression patterns of these genes are first characterized in terms of their average or typical behavior. At this level, the expression of all of the genes has been integrated into a single atlas of gene expression in which the expression levels of all genes in each cell are specified. We show that expression domains do not arise synchronously, but rather each domain has its own specific dynamics of formation. Moreover, we show that the expression domains shift position in the direction of the cephalic furrow, such that domains in the anlage of the segmented germ band shift anteriorly while those in the presumptive head shift posteriorly. The expression atlas of integrated data is very close to the expression profiles of individual embryos during the latter part of the blastoderm stage. At earlier times gap gene domains show considerable variation in amplitude, and significant positional variability. Nevertheless, an average early gap domain is close to that of a median individual. In contrast, we show that there is a diversity of developmental trajectories among pair-rule genes at a variety of levels, including the order of domain formation and positional accuracy. We further show that this variation is dynamically reduced, or canalized, over time. As the first quantitatively characterized morphogenetic field, this system and its behavior constitute an extraordinarily rich set of materials for the study of canalization and embryonic regulation at the molecular level.


Assuntos
Padronização Corporal , Drosophila/embriologia , Expressão Gênica , Genes de Insetos , Morfogênese , Análise de Variância , Animais , Blastoderma/citologia , Blastoderma/metabolismo , Padronização Corporal/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Desenvolvimento Embrionário , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Reprodutibilidade dos Testes , Fatores de Tempo , Fatores de Transcrição/metabolismo
5.
Trends Genet ; 18(8): 385-7, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12142000

RESUMO

Critical boundaries in the early Drosophila embryo are set by morphogenetic gradients. A new quantitative study shows that the placement of one such boundary is more accurate than the gradient thought to set it. Genetic analysis of the accuracy of the process implicates a gene not previously thought to be involved.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila , Drosophila/embriologia , Proteínas de Homeodomínio/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Drosophila/genética , Proteínas de Homeodomínio/genética , Temperatura , Transativadores/genética , Fatores de Transcrição/genética
6.
Genetics ; 167(4): 1721-37, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15342511

RESUMO

Genetic studies have revealed that segment determination in Drosophila melanogaster is based on hierarchical regulatory interactions among maternal coordinate and zygotic segmentation genes. The gap gene system constitutes the most upstream zygotic layer of this regulatory hierarchy, responsible for the initial interpretation of positional information encoded by maternal gradients. We present a detailed analysis of regulatory interactions involved in gap gene regulation based on gap gene circuits, which are mathematical gene network models used to infer regulatory interactions from quantitative gene expression data. Our models reproduce gap gene expression at high accuracy and temporal resolution. Regulatory interactions found in gap gene circuits provide consistent and sufficient mechanisms for gap gene expression, which largely agree with mechanisms previously inferred from qualitative studies of mutant gene expression patterns. Our models predict activation of Kr by Cad and clarify several other regulatory interactions. Our analysis suggests a central role for repressive feedback loops between complementary gap genes. We observe that repressive interactions among overlapping gap genes show anteroposterior asymmetry with posterior dominance. Finally, our models suggest a correlation between timing of gap domain boundary formation and regulatory contributions from the terminal maternal system.


Assuntos
Drosophila melanogaster/genética , Proteínas Ativadoras de GTPase/genética , Regulação da Expressão Gênica/fisiologia , Animais , Blastoderma/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Modelos Genéticos , Zigoto/fisiologia
7.
Dev Dyn ; 235(11): 2949-60, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16960857

RESUMO

We analyze the relation between maternal gradients and segmentation in Drosophila, by quantifying spatial precision in protein patterns. Segmentation is first seen in the striped expression patterns of the pair-rule genes, such as even-skipped (eve). We compare positional precision between Eve and the maternal gradients of Bicoid (Bcd) and Caudal (Cad) proteins, showing that Eve position could be initially specified by the maternal protein concentrations but that these do not have the precision to specify the mature striped pattern of Eve. By using spatial trends, we avoid possible complications in measuring single boundary precision (e.g., gap gene patterns) and can follow how precision changes in time. During nuclear cleavage cycles 13 and 14, we find that Eve becomes increasingly correlated with egg length, whereas Bcd does not. This finding suggests that the change in precision is part of a separation of segmentation from an absolute spatial measure, established by the maternal gradients, to one precise in relative (percent egg length) units.


Assuntos
Padronização Corporal/genética , Proteínas de Drosophila/análise , Drosophila/química , Drosophila/embriologia , Proteínas de Homeodomínio/análise , Transativadores/análise , Fatores de Transcrição/análise , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Embrião não Mamífero/química , Embrião não Mamífero/metabolismo , Expressão Gênica , Genes de Insetos , Proteínas de Homeodomínio/genética , Transativadores/genética , Fatores de Transcrição/genética
8.
Dev Genes Evol ; 215(7): 374-81, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15834586

RESUMO

We describe an automated high-throughput method to measure protein levels in single nuclei in blastoderm embryos of Drosophila melanogaster by means of immunofluorescence. The method consists of a chain of specific algorithms assembled into an image processing pipeline. This pipeline transforms a confocal scan of an embryo stained with fluorescently tagged antibodies into a text file. This text file contains a numerical identifier for each nucleus, the coordinates of its centroid, and the average concentrations of three proteins in that nucleus. The central algorithmic component of the method is the automatic identification of nuclei by edge detection with the use of watersheds as an error-correction step. This method provides high-throughput quantification at cellular resolution.


Assuntos
Drosophila/embriologia , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Algoritmos , Animais , Antígenos CD20/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião não Mamífero/metabolismo , Técnica Direta de Fluorescência para Anticorpo , Genes de Insetos , Hemoglobinas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Processamento de Imagem Assistida por Computador , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Microscopia Confocal , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
J Theor Biol ; 235(2): 185-98, 2005 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-15862588

RESUMO

The Bicoid (Bcd) protein is a concentration-dependent transcriptional activator in the embryo of Drosophila melanogaster. Bcd regulates the expression of the maternal and zygotic gene hunchback (hb) that shows a step-like-function expression pattern, in the anterior half of the egg. The regulatory region of hb contains six major binding sites for the Bcd protein, named A1, A2, A3 (strong sites), and X1, X2, X3 (weak sites). Cooperativity between Bcd molecules binding to the hb enhancer element has been characterized as an important mechanism for the step-like shape of hb anterior expression domain. The objective of the present report is to analyse the mechanism of this cooperative binding based on a reaction network model. Using this method we have analysed experimental results from the literature describing how the Bcd protein binds to hb enhancer elements containing the A1 or X1 site alone or these two sites together at wild type distance. This approach allows us to estimate the kinetic constants of protein-protein and protein-DNA interactions. Moreover our results suggest that binding of a Bcd dimer to the hb enhancer element is more stable than binding of a monomer. We propose a cooperative kinetic mechanism for binding of Bcd to the hb enhancer element: First, a monomer binds to the site with a relatively low affinity; after that, another monomer binds to the first one with higher affinity, generating a dimer bound to the site. This yet unreported monomer-monomer cooperative mechanism takes place for occupancy of either one-site or two-site enhancer elements. In addition, we find cooperativity between neighbor sites, as previously reported in the literature.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Sequências Reguladoras de Ácido Nucleico , Animais , Sítios de Ligação , Pegada de DNA , Proteínas de Ligação a DNA/genética , Dimerização , Proteínas de Homeodomínio/genética , Modelos Genéticos , Ligação Proteica , Transativadores/genética , Fatores de Transcrição/genética
10.
Proc Natl Acad Sci U S A ; 102(37): 13176-81, 2005 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-16150708

RESUMO

Cooperative interactions by DNA-binding proteins have been implicated in cell-fate decisions in a variety of organisms. To date, however, there are few examples in which the importance of such interactions has been explicitly tested in vivo. Here, we tested the importance of cooperative DNA binding by the Bicoid protein in establishing a pattern along the anterior-posterior axis of the early Drosophila embryo. We found that bicoid mutants specifically defective in cooperative DNA binding fail to direct proper development of the head and thorax, leading to embryonic lethality. The mutants did not faithfully stimulate transcription of downstream target genes such as hunchback (hb), giant, and Krüppel. Quantitative analysis of gene expression in vivo indicated that bcd cooperativity mutants were unable to accurately direct the extent to which hb is expressed along the anterior-posterior axis and displayed a reduced ability to generate sharp on/off transitions for hb gene expression. These failures in precise transcriptional control demonstrate the importance of cooperative DNA binding for embryonic patterning in vivo.


Assuntos
Padronização Corporal , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/fisiologia , Transativadores/fisiologia , Regulação Alostérica , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Cabeça/crescimento & desenvolvimento , Proteínas de Homeodomínio/genética , Mutação , Ligação Proteica , Tórax/crescimento & desenvolvimento , Transativadores/genética , Fatores de Transcrição/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA