Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042807

RESUMO

Genomics encompasses the entire tree of life, both extinct and extant, and the evolutionary processes that shape this diversity. To date, genomic research has focused on humans, a small number of agricultural species, and established laboratory models. Fewer than 18,000 of ∼2,000,000 eukaryotic species (<1%) have a representative genome sequence in GenBank, and only a fraction of these have ancillary information on genome structure, genetic variation, gene expression, epigenetic modifications, and population diversity. This imbalance reflects a perception that human studies are paramount in disease research. Yet understanding how genomes work, and how genetic variation shapes phenotypes, requires a broad view that embraces the vast diversity of life. We have the technology to collect massive and exquisitely detailed datasets about the world, but expertise is siloed into distinct fields. A new approach, integrating comparative genomics with cell and evolutionary biology, ecology, archaeology, anthropology, and conservation biology, is essential for understanding and protecting ourselves and our world. Here, we describe potential for scientific discovery when comparative genomics works in close collaboration with a broad range of fields as well as the technical, scientific, and social constraints that must be addressed.


Assuntos
Biodiversidade , Evolução Biológica , Genômica/métodos , Animais , Evolução Molecular , Variação Genética/genética , Genoma/genética , Genômica/tendências , Humanos , Filogenia
2.
Retrovirology ; 21(1): 3, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347535

RESUMO

Endogenous retroviruses (ERV) are indicators of vertebrate evolutionary history and play important roles as homeostatic regulators. ERV long terminal repeat (LTR) elements may act as cis-activating promoters or trans-activating enhancer elements modifying gene transcription distant from LTR insertion sites. We previously documented that endogenous feline leukemia virus (FeLV)-LTR copy number variation in individual cats tracks inversely with susceptibility to virulent FeLV disease. To evaluate FeLV-LTR insertion characteristics, we assessed enFeLV-LTR integration site diversity in 20 cats from three genetically distinct populations using a baited linker-mediated PCR approach. We documented 765 individual integration sites unequally represented among individuals. Only three LTR integration sites were shared among all individuals, while 412 sites were unique to a single individual. When primary fibroblast cultures were challenged with exogenous FeLV, we found significantly increased expression of both exogenous and endogenous FeLV orthologs, supporting previous findings of potential exFeLV-enFeLV interactions; however, viral challenge did not elicit transcriptional changes in genes associated with the vast majority of integration sites. This study assesses FeLV-LTR integration sites in individual animals, providing unique transposome genotypes. Further, we document substantial individual variation in LTR integration site locations, even in a highly inbred population, and provide a framework for understanding potential endogenous retroviral element position influence on host gene transcription.


Assuntos
Retrovirus Endógenos , Leucemia Felina , Humanos , Animais , Gatos , Vírus da Leucemia Felina/genética , Vírus da Leucemia Felina/metabolismo , Variações do Número de Cópias de DNA , Sequências Repetidas Terminais , Retrovirus Endógenos/genética , Regiões Promotoras Genéticas , Leucemia Felina/genética
3.
J Cell Sci ; 135(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35638570

RESUMO

As the development of combination antiretroviral therapy (cART) against human immunodeficiency virus (HIV) drastically improves the lifespan of individuals with HIV, many are now entering the prime age when Alzheimer's disease (AD)-like symptoms begin to manifest. It has been shown that hyperphosphorylated tau, a known AD pathological characteristic, is prematurely increased in the brains of HIV-infected individuals as early as in their 30s and that its levels increase with age. This suggests that HIV infection might lead to accelerated AD phenotypes. However, whether HIV infection causes AD to develop more quickly in the brain is not yet fully determined. Interestingly, we have previously revealed that the viral glycoproteins HIV gp120 and feline immunodeficiency virus (FIV) gp95 induce neuronal hyperexcitation via cGMP-dependent kinase II (cGKII; also known as PRKG2) activation in cultured hippocampal neurons. Here, we use cultured mouse cortical neurons to demonstrate that the presence of HIV gp120 and FIV gp95 are sufficient to increase cellular tau pathology, including intracellular tau hyperphosphorylation and tau release to the extracellular space. We further reveal that viral glycoprotein-induced cellular tau pathology requires cGKII activation. Taken together, HIV infection likely accelerates AD-related tau pathology via cGKII activation.


Assuntos
Doença de Alzheimer , Infecções por HIV , Vírus da Imunodeficiência Felina , Doença de Alzheimer/patologia , Animais , Gatos , Glicoproteínas , Vírus da Imunodeficiência Felina/fisiologia , Camundongos , Neurônios/patologia , Proteínas tau/genética
4.
BMC Med Res Methodol ; 24(1): 30, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331732

RESUMO

BACKGROUND: Rapidly developing tests for emerging diseases is critical for early disease monitoring. In the early stages of an epidemic, when low prevalences are expected, high specificity tests are desired to avoid numerous false positives. Selecting a cutoff to classify positive and negative test results that has the desired operating characteristics, such as specificity, is challenging for new tests because of limited validation data with known disease status. While there is ample statistical literature on estimating quantiles of a distribution, there is limited evidence on estimating extreme quantiles from limited validation data and the resulting test characteristics in the disease testing context. METHODS: We propose using extreme value theory to select a cutoff with predetermined specificity by fitting a Pareto distribution to the upper tail of the negative controls. We compared this method to five previously proposed cutoff selection methods in a data analysis and simulation study. We analyzed COVID-19 enzyme linked immunosorbent assay antibody test results from long-term care facilities and skilled nursing staff in Colorado between May and December of 2020. RESULTS: We found the extreme value approach had minimal bias when targeting a specificity of 0.995. Using the empirical quantile of the negative controls performed well when targeting a specificity of 0.95. The higher target specificity is preferred for overall test accuracy when prevalence is low, whereas the lower target specificity is preferred when prevalence is higher and resulted in less variable prevalence estimation. DISCUSSION: While commonly used, the normal based methods showed considerable bias compared to the empirical and extreme value theory-based methods. CONCLUSIONS: When determining disease testing cutoffs from small training data samples, we recommend using the extreme value based-methods when targeting a high specificity and the empirical quantile when targeting a lower specificity.


Assuntos
Testes Diagnósticos de Rotina , Humanos , Sensibilidade e Especificidade , Viés
5.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34716263

RESUMO

SARS-CoV-2 spillback from humans into domestic and wild animals has been well documented, and an accumulating number of studies illustrate that human-to-animal transmission is widespread in cats, mink, deer, and other species. Experimental inoculations of cats, mink, and ferrets have perpetuated transmission cycles. We sequenced full genomes of Vero cell-expanded SARS-CoV-2 inoculum and viruses recovered from cats (n = 6), dogs (n = 3), hamsters (n = 3), and a ferret (n = 1) following experimental exposure. Five nonsynonymous changes relative to the USA-WA1/2020 prototype strain were near fixation in the stock used for inoculation but had reverted to wild-type sequences at these sites in dogs, cats, and hamsters within 1- to 3-d postexposure. A total of 14 emergent variants (six in nonstructural genes, six in spike, and one each in orf8 and nucleocapsid) were detected in viruses recovered from animals. This included substitutions in spike residues H69, N501, and D614, which also vary in human lineages of concern. Even though a live virus was not cultured from dogs, substitutions in replicase genes were detected in amplified sequences. The rapid selection of SARS-CoV-2 variants in vitro and in vivo reveals residues with functional significance during host switching. These observations also illustrate the potential for spillback from animal hosts to accelerate the evolution of new viral lineages, findings of particular concern for dogs and cats living in households with COVID-19 patients. More generally, this glimpse into viral host switching reveals the unrealized rapidity and plasticity of viral evolution in experimental animal model systems.


Assuntos
COVID-19/virologia , Evolução Molecular , SARS-CoV-2/genética , Seleção Genética , Animais , COVID-19/veterinária , Gatos , Chlorocebus aethiops , Cães , Furões , Frequência do Gene , Animais de Estimação/virologia , SARS-CoV-2/patogenicidade , Células Vero , Proteínas Virais/genética
6.
J Basic Microbiol ; 64(1): 22-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37551993

RESUMO

Dermatophytes are highly infectious fungi that cause superficial infections in keratinized tissues in humans and animals. This group of fungi is defined by their ability to digest keratin and encompasses a wide range of species. We investigated a critical adhesion protein, subtilisin 3, utilized by Microsporum canis during initial stages of infection, analyzing its production and expression under varying growth conditions. Additionally, as this protein must be expressed and produced for dermatophyte infections to occur, we developed and optimized a diagnostic antibody assay targeting this protein. Subtilisin 3 levels were increased in culture when grown in baffled flasks and supplemented with either l-cysteine or cat hair. As subtilisin 3 was also produced in cultures not supplemented with keratin or cysteine, this study demonstrated that subtilisin 3 production is not reliant on the presence of keratin or its derivatives. These findings could help direct future metabolic studies of dermatophytes, particularly during the adherence phase of infections.


Assuntos
Dermatomicoses , Subtilisina , Animais , Humanos , Subtilisina/metabolismo , Dermatomicoses/microbiologia , Queratinas , Microsporum/metabolismo
7.
J Virol ; 96(23): e0120122, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36374109

RESUMO

Feline leukemia virus (FeLV) is a gammaretrovirus with horizontally transmitted and endogenous forms. Domestic cats are the primary reservoir species, but FeLV outbreaks in endangered Florida panthers and Iberian lynxes have resulted in mortalities. To assess prevalence and interspecific/intraspecific transmission, we conducted an extensive survey and phylogenetic analysis of FeLV infection in free-ranging pumas (n = 641) and bobcats (n = 212) and shelter domestic cats (n = 304). Samples were collected from coincident habitats across the United States between 1985 and 2018. FeLV infection was detected in 3.12% of the puma samples, 0.47% of the bobcat samples, and 6.25% of the domestic cat samples analyzed. Puma prevalence varied by location, with Florida having the highest rate of infection. FeLV env sequences revealed variation among isolates, and we identified two distinct clades. Both progressive and regressive infections were identified in cats and pumas. Based on the time and location of sampling and phylogenetic analysis, we inferred 3 spillover events between domestic cats and pumas; 3 puma-to-puma transmissions in Florida were inferred. An additional 14 infections in pumas likely represented spillover events following contact with reservoir host domestic cat populations. Our data provide evidence that FeLV transmission from domestic cats to pumas occurs widely across the United States, and puma-to-puma transmission may occur in genetically and geographically constrained populations. IMPORTANCE Feline leukemia virus (FeLV) is a retrovirus that primarily affects domestic cats. Close interactions with domestic cats, including predation, can lead to the interspecific transmission of the virus to pumas, bobcats, or other feline species. Some infected individuals develop progressive infections, which are associated with clinical signs of disease and can result in mortality. Therefore, outbreaks of FeLV in wildlife, including the North American puma and the endangered Florida panther, are of high conservation concern. This work provides a greater understanding of the dynamics of the transmission of FeLV between domestic cats and wild felids and presents evidence of multiple spillover events and infections in all sampled populations. These findings highlight the concern for pathogen spillover from domestic animals to wildlife but also identify an opportunity to understand viral evolution following cross-species transmissions more broadly.


Assuntos
Gatos , Vírus da Leucemia Felina , Leucemia Felina , Puma , Animais , Gatos/virologia , Animais Selvagens/virologia , Vírus da Leucemia Felina/isolamento & purificação , Leucemia Felina/epidemiologia , Lynx/virologia , Filogenia , Puma/virologia , Estados Unidos
8.
Proc Natl Acad Sci U S A ; 117(42): 26382-26388, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32994343

RESUMO

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has reached nearly every country in the world with extraordinary person-to-person transmission. The most likely original source of the virus was spillover from an animal reservoir and subsequent adaptation to humans sometime during the winter of 2019 in Wuhan Province, China. Because of its genetic similarity to SARS-CoV-1, it is probable that this novel virus has a similar host range and receptor specificity. Due to concern for human-pet transmission, we investigated the susceptibility of domestic cats and dogs to infection and potential for infected cats to transmit to naive cats. We report that cats are highly susceptible to infection, with a prolonged period of oral and nasal viral shedding that is not accompanied by clinical signs, and are capable of direct contact transmission to other cats. These studies confirm that cats are susceptible to productive SARS-CoV-2 infection, but are unlikely to develop clinical disease. Further, we document that cats developed a robust neutralizing antibody response that prevented reinfection following a second viral challenge. Conversely, we found that dogs do not shed virus following infection but do seroconvert and mount an antiviral neutralizing antibody response. There is currently no evidence that cats or dogs play a significant role in human infection; however, reverse zoonosis is possible if infected owners expose their domestic pets to the virus during acute infection. Resistance to reinfection holds promise that a vaccine strategy may protect cats and, by extension, humans.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/virologia , Pneumonia Viral/virologia , Animais , Animais Domésticos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Antígenos Virais/imunologia , Betacoronavirus/imunologia , COVID-19 , Gatos , Infecções por Coronavirus/patologia , Infecções por Coronavirus/transmissão , Modelos Animais de Doenças , Cães , Feminino , Masculino , Pandemias , Pneumonia Viral/patologia , Pneumonia Viral/transmissão , SARS-CoV-2 , Eliminação de Partículas Virais
9.
J Virol ; 95(23): e0007021, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34495702

RESUMO

Endogenous retroviruses (ERVs) are increasingly recognized for biological impacts on host cell function and susceptibility to infectious agents, particularly in relation to interactions with exogenous retroviral progenitors (XRVs). ERVs can simultaneously promote and restrict XRV infections using mechanisms that are virus and host specific. The majority of endogenous-exogenous retroviral interactions have been evaluated in experimental mouse or chicken systems, which are limited in their ability to extend findings to naturally infected outbred animals. Feline leukemia virus (FeLV) has a relatively well-characterized endogenous retrovirus with a coexisting virulent exogenous counterpart and is endemic worldwide in domestic cats. We have previously documented an association between endogenous FeLV (enFeLV) long terminal repeat (LTR) copy number and abrogated exogenous FeLV in naturally infected cats and experimental infections in tissue culture. Analyses described here examine limited FeLV replication in experimentally infected peripheral blood mononuclear cells, which correlates with higher enFeLV transcripts in these cells compared to fibroblasts. We further examine NCBI Sequence Read Archive RNA transcripts to evaluate enFeLV transcripts and RNA interference (RNAi) precursors. We find that lymphoid-derived tissues, which are experimentally less permissive to exogenous FeLV infection, transcribe higher levels of enFeLV under basal conditions. Transcription of enFeLV-LTR segments is significantly greater than that of other enFeLV genes. We documented transcription of a 21-nucleotide (nt) microRNA (miRNA) just 3' to the enFeLV 5'-LTR in the feline miRNAome of all data sets evaluated (n = 27). Our findings point to important biological functions of enFeLV transcription linked to solo LTRs distributed within the domestic cat genome, with potential impacts on domestic cat exogenous FeLV susceptibility and pathogenesis. IMPORTANCE Endogenous retroviruses (ERVs) are increasingly implicated in host cellular processes and susceptibility to infectious agents, specifically regarding interactions with exogenous retroviral progenitors (XRVs). Exogenous feline leukemia virus (FeLV) and its endogenous counterpart (enFeLV) represent a well-characterized, naturally occurring XRV-ERV dyad. We have previously documented an abrogated FeLV infection in both naturally infected cats and experimental fibroblast infections that harbor higher enFeLV proviral loads. Using an in silico approach, we provide evidence of miRNA transcription that is produced in tissues that are most important for FeLV infection, replication, and transmission. Our findings point to important biological functions of enFeLV transcription linked to solo-LTRs distributed within the feline genome, with potential impacts on domestic cat exogenous FeLV susceptibility and pathogenesis. This body of work provides additional evidence of RNA interference (RNAi) as a mechanism of viral interference and is a demonstration of ERV exaptation by the host to defend against related XRVs.


Assuntos
Vírus da Leucemia Felina/genética , Vírus da Leucemia Felina/metabolismo , Leucemia Felina/virologia , RNA Interferente Pequeno/metabolismo , RNA Viral/genética , Animais , Gatos/genética , Retrovirus Endógenos , Fibroblastos , Leucócitos Mononucleares , Tecido Linfoide , Camundongos , MicroRNAs , RNA Interferente Pequeno/genética , Sequências Repetidas Terminais , Transcriptoma , Replicação Viral
10.
J Virol ; 95(18): e0035321, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34232703

RESUMO

Feline leukemia virus (FeLV) is associated with a range of clinical signs in felid species. Differences in disease processes are closely related to genetic variation in the envelope (env) region of the genome of six defined subgroups. The primary hosts of FeLV are domestic cats of the Felis genus that also harbor endogenous FeLV (enFeLV) elements stably integrated in their genomes. EnFeLV elements display 86% nucleotide identity to exogenous, horizontally transmitted FeLV (FeLV-A). Variation between enFeLV and FeLV-A is primarily in the long terminal repeat (LTR) and env regions, which potentiates generation of the FeLV-B recombinant subgroup during natural infection. The aim of this study was to examine recombination behavior of exogenous FeLV (exFeLV) and enFeLV in a natural FeLV epizootic. We previously described that of 65 individuals in a closed colony, 32 had productive FeLV-A infection, and 22 of these individuals had detectable circulating FeLV-B. We cloned and sequenced the env gene of FeLV-B, FeLV-A, and enFeLV spanning known recombination breakpoints and examined between 1 and 13 clones in 22 animals with FeLV-B to assess sequence diversity and recombination breakpoints. Our analysis revealed that FeLV-A sequences circulating in the population, as well as enFeLV env sequences, are highly conserved. We documented many recombination breakpoints resulting in the production of unique FeLV-B genotypes. More than half of the cats harbored more than one FeLV-B variant, suggesting multiple recombination events between enFeLV and FeLV-A. We concluded that FeLV-B was predominantly generated de novo within each host, although we could not definitively rule out horizontal transmission, as nearly all cats harbored FeLV-B sequences that were genetically highly similar to those identified in other individuals. This work represents a comprehensive analysis of endogenous-exogenous retroviral interactions with important insights into host-virus interactions that underlie disease pathogenesis in a natural setting. IMPORTANCE Feline leukemia virus (FeLV) is a felid retrovirus with a variety of disease outcomes. Exogenous FeLV-A is the virus subgroup almost exclusively transmitted between cats. Recombination between FeLV-A and endogenous FeLV analogues in the cat genome may result in emergence of largely replication-defective but highly virulent subgroups. FeLV-B is formed when the 3' envelope (env) region of endogenous FeLV (enFeLV) recombines with that of the exogenous FeLV (exFeLV) during viral reverse transcription and integration. Both domestic cats and wild relatives of the Felis genus harbor enFeLV, which has been shown to limit FeLV-A disease outcome. However, enFeLV also contributes genetic material to the recombinant FeLV-B subgroup. This study evaluates endogenous-exogenous recombination outcomes in a naturally infected closed colony of cats to determine mechanisms and risk of endogenous retroviral recombination during exogenous virus exposure that leads to enhanced virulence. While FeLV-A and enFeLV env regions were highly conserved from cat to cat, nearly all individuals with emergent FeLV-B had unique combinations of genotypes, representative of a wide range of recombination sites within env. The findings provide insight into unique recombination patterns for emergence of new pathogens and can be related to similar viruses across species.


Assuntos
Retrovirus Endógenos/genética , Genes env , Vírus da Leucemia Felina/genética , Leucemia Felina/virologia , RNA Viral/genética , Recombinação Genética , Infecções por Retroviridae/virologia , Animais , Gatos , Retrovirus Endógenos/classificação , Feminino , Vírus da Leucemia Felina/classificação , Masculino , Sequências Repetidas Terminais
11.
Med Mycol ; 60(2)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-34999826

RESUMO

Dermatophytosis is a superficial fungal infection of keratinized tissues that can occur in humans and other animals. In domestic cats, the majority of cases are caused by Microsporum canis and can spread to other animals and humans via arthrospores. Between 2019 and 2021, 164 cases of suspected dermatophytosis were recorded in animals from a high-volume shelter in California. Samples (hair, nail, and skin scraping) were collected for routine screening from these individuals. One hundred and twenty-six of these were diagnosed as M. canis by culture and internal transcribed spacer (ITS) sequence. In four suspected dermatophytosis cases occurring in kittens in 2019, cultures grown at 20°C yielded fungi with colony morphology more similar to Arthroderma species than Microsporum. Morphologic and microscopic examinations were conducted, and gene segments for the ITS, ß-tubulin, and translation elongation factor 1-alpha (TEF1) regions were sequenced from DNA extracted from these cultures. Sequences were aligned to other dermatophytes using maximum likelihood and neighbor-joining trees and were compared to previously described fungal species to assess nucleotide homology. We identified two previously undescribed fungal species, herein proposed as Arthroderma lilyanum sp. nov. and Arthroderma mcgillisianum sp. nov. M. canis co-cultured in two of the four cases. Other physiologic tests supported this diagnosis. These species have significance as potential pathogens and should be considered as rule-outs for dermatophytosis in cats. The potential for infection of other species, including humans, should be considered. LAY SUMMARY: Two novel fungal species were cultured and characterized from four cases of suspected ringworm in cats at an animal shelter in CA, US. These species were genetically distinct from other dermatophytes and are herein described as Arthroderma lilyanum sp. nov. and Arthroderma mcgillisianum sp. nov.


Assuntos
Arthrodermataceae , Doenças do Gato , Dermatomicoses , Tinha , Animais , Arthrodermataceae/genética , Doenças do Gato/diagnóstico , Doenças do Gato/epidemiologia , Gatos , Dermatomicoses/diagnóstico , Dermatomicoses/epidemiologia , Dermatomicoses/veterinária , Feminino , Cabelo , Microsporum , Tinha/diagnóstico , Tinha/epidemiologia , Tinha/veterinária , Tubulina (Proteína) , Estados Unidos/epidemiologia
12.
Conserv Biol ; 36(1): e13719, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33586245

RESUMO

Parasite success typically depends on a close relationship with one or more hosts; therefore, attributes of parasitic infection have the potential to provide indirect details of host natural history and are biologically relevant to animal conservation. Characterization of parasite infections has been useful in delineating host populations and has served as a proxy for assessment of environmental quality. In other cases, the utility of parasites is just being explored, for example, as indicators of host connectivity. Innovative studies of parasite biology can provide information to manage major conservation threats by using parasite assemblage, prevalence, or genetic data to provide insights into the host. Overexploitation, habitat loss and fragmentation, invasive species, and climate change are major threats to animal conservation, and all of these can be informed by parasites.


Los Parásitos como Herramienta de Conservación Resumen El éxito de los parásitos depende típicamente de la relación cercana con uno o más hospederos; por lo tanto, las características de la infección parasitaria tienen potencial para proporcionar detalles indirectos de la historia natural del hospedero y son biológicamente relevantes para la conservación animal. La caracterización de las infecciones parasitarias ha sido útil para definir a las poblaciones hospederas y ha servido como sustituto para la evaluación de la calidad ambiental. Los estudios innovadores de la biología de parásitos pueden proporcionar información para manejar las principales amenazas a la conservación mediante la información proporcionada por el conjunto de parásitos, su prevalencia o genética que proporciona conocimiento sobre el hospedero. La sobreexplotación, la pérdida del hábitat y la fragmentación, las especies invasoras y el cambio climático son las principales amenazas para la conservación animal y a todas pueden ser informadas mediante los parásitos.


Assuntos
Parasitos , Animais , Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Espécies Introduzidas
13.
J Virol ; 94(21)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32817213

RESUMO

While feline leukemia virus (FeLV) has been shown to infect felid species other than the endemic domestic cat host, differences in FeLV susceptibility among species has not been evaluated. Previous reports have noted a negative correlation between endogenous FeLV (enFeLV) copy number and exogenous FeLV (exFeLV) infection outcomes in domestic cats. Since felids outside the genus Felis do not harbor enFeLV genomes, we hypothesized absence of enFeLV results in more severe disease consequences in felid species lacking these genomic elements. We infected primary fibroblasts isolated from domestic cats (Felis catus) and pumas (Puma concolor) with FeLV and quantitated proviral and viral antigen loads. Domestic cat enFeLV env and long terminal repeat (LTR) copy numbers were determined for each individual and compared to FeLV viral outcomes. FeLV proviral and antigen levels were also measured in 6 naturally infected domestic cats and 11 naturally infected Florida panthers (P. concolor coryi). We demonstrated that puma fibroblasts are more permissive to FeLV than domestic cat cells, and domestic cat FeLV restriction was highly related to enFeLV-LTR copy number. Terminal tissues from FeLV-infected Florida panthers and domestic cats had similar exFeLV proviral copy numbers, but Florida panther tissues have higher FeLV antigen loads. Our work indicates that enFeLV-LTR elements negatively correlate with exogenous FeLV replication. Further, Puma concolor samples lacking enFeLV are more permissive to FeLV infection than domestic cat samples, suggesting that endogenization can play a beneficial role in mitigating exogenous retroviral infections. Conversely, presence of endogenous retroelements may relate to new host susceptibility during viral spillover events.IMPORTANCE Feline leukemia virus (FeLV) can infect a variety of felid species. Only the primary domestic cat host and related small cat species harbor a related endogenous virus in their genomes. Previous studies noted a negative association between the endogenous virus copy number and exogenous virus infection in domestic cats. This report shows that puma cells, which lack endogenous FeLV, produce more virus more rapidly than domestic cat fibroblasts following cell culture challenge. We document a strong association between domestic cat cell susceptibility and FeLV long terminal repeat (LTR) copy number, similar to observations in natural FeLV infections. Viral replication does not, however, correlate with FeLV env copy number, suggesting that this effect is specific to FeLV-LTR elements. This discovery indicates a protective capacity of the endogenous virus against the exogenous form, either via direct interference or indirectly via gene regulation, and may suggest evolutionary outcomes of retroviral endogenization.


Assuntos
Variações do Número de Cópias de DNA , Produtos do Gene env/genética , Vírus da Leucemia Felina/genética , Vírus da Leucemia Felina/patogenicidade , Leucemia Felina/virologia , Puma/virologia , Animais , Medula Óssea/patologia , Medula Óssea/virologia , Gatos , Feminino , Fibroblastos/patologia , Fibroblastos/virologia , Produtos do Gene env/metabolismo , Especificidade de Hospedeiro , Vírus da Leucemia Felina/metabolismo , Leucemia Felina/patologia , Linfonodos/patologia , Linfonodos/virologia , Masculino , Cultura Primária de Células , Baço/patologia , Baço/virologia , Sequências Repetidas Terminais , Timo/patologia , Timo/virologia , Carga Viral , Replicação Viral/genética
14.
PLoS Biol ; 16(7): e2005315, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30052626

RESUMO

Over half of individuals infected with human immunodeficiency virus (HIV) suffer from HIV-associated neurocognitive disorders (HANDs), yet the molecular mechanisms leading to neuronal dysfunction are poorly understood. Feline immunodeficiency virus (FIV) naturally infects cats and shares its structure, cell tropism, and pathology with HIV, including wide-ranging neurological deficits. We employ FIV as a model to elucidate the molecular pathways underlying HIV-induced neuronal dysfunction, in particular, synaptic alteration. Among HIV-induced neuron-damaging products, HIV envelope glycoprotein gp120 triggers elevation of intracellular Ca2+ activity in neurons, stimulating various pathways to damage synaptic functions. We quantify neuronal Ca2+ activity using intracellular Ca2+ imaging in cultured hippocampal neurons and confirm that FIV envelope glycoprotein gp95 also elevates neuronal Ca2+ activity. In addition, we reveal that gp95 interacts with the chemokine receptor, CXCR4, and facilitates the release of intracellular Ca2+ by the activation of the endoplasmic reticulum (ER)-associated Ca2+ channels, inositol triphosphate receptors (IP3Rs), and synaptic NMDA receptors (NMDARs), similar to HIV gp120. This suggests that HIV gp120 and FIV gp95 share a core pathological process in neurons. Significantly, gp95's stimulation of NMDARs activates cGMP-dependent protein kinase II (cGKII) through the activation of the neuronal nitric oxide synthase (nNOS)-cGMP pathway, which increases Ca2+ release from the ER and promotes surface expression of AMPA receptors, leading to an increase in synaptic activity. Moreover, we culture feline hippocampal neurons and confirm that gp95-induced neuronal Ca2+ overactivation is mediated by CXCR4 and cGKII. Finally, cGKII activation is also required for HIV gp120-induced Ca2+ hyperactivation. These results thus provide a novel neurobiological mechanism of cGKII-mediated synaptic hyperexcitation in HAND.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo II/metabolismo , Síndrome de Imunodeficiência Adquirida Felina/virologia , HIV-1/fisiologia , Vírus da Imunodeficiência Felina/fisiologia , Sinapses/metabolismo , Animais , Cálcio/metabolismo , Gatos , Quimiocina CXCL12/farmacologia , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Proteína gp120 do Envelope de HIV/metabolismo , Hipocampo/patologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Subunidades Proteicas/metabolismo , Receptores de AMPA/metabolismo , Proteínas Virais/metabolismo
15.
PLoS Comput Biol ; 16(6): e1007457, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32525874

RESUMO

Although movement ecology has leveraged models of home range formation to explore the effects of spatial heterogeneity and social cues on movement behavior, disease ecology has yet to integrate these potential drivers and mechanisms of contact behavior into a generalizable disease modeling framework. Here we ask how dynamic territory formation and maintenance might contribute to disease dynamics in a territorial, solitary predator for an indirectly transmitted pathogen. We developed a mechanistic individual-based model where stigmergy-the deposition of signals into the environment (e.g., scent marking, scraping)-dictates local movement choices and long-term territory formation, but also the risk of pathogen transmission. Based on a variable importance analysis, the length of the infectious period was the single most important variable in predicting outbreak success, maximum prevalence, and outbreak duration. Host density and rate of pathogen decay were also key predictors. We found that territoriality best reduced maximum prevalence in conditions where we would otherwise expect outbreaks to be most successful: slower recovery rates (i.e., longer infectious periods) and higher conspecific densities. However, for slower pathogen decay rates, stigmergy-driven movement increased outbreak durations relative to random movement simulations. Our findings therefore support a limited version of the "territoriality benefits" hypothesis-where reduced home range overlap leads to reduced opportunities for pathogen transmission, but with the caveat that reduction in outbreak severity may increase the likelihood of pathogen persistence. For longer infectious periods and higher host densities, key trade-offs emerged between the strength of pathogen load, the strength of the stigmergy cue, and the rate at which those two quantities decayed; this finding raises interesting questions about the evolutionary nature of these competing processes and the role of possible feedbacks between parasitism and territoriality. This work also highlights the importance of considering social cues as part of the movement landscape in order to better understand the consequences of individual behaviors on population level outcomes.


Assuntos
Comportamento Animal , Ecologia , Prevalência , Territorialidade , Animais , Simulação por Computador , Surtos de Doenças , Comportamento de Retorno ao Território Vital , Modelos Biológicos , Modelos Estatísticos , Feromônios , Probabilidade
16.
Environ Sci Technol ; 55(5): 2890-2898, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33605140

RESUMO

The inability to communicate how infectious diseases are transmitted in human environments has triggered avoidance of interactions during the COVID-19 pandemic. We define a metric, Effective ReBreathed Volume (ERBV), that encapsulates how infectious pathogens, including SARS-CoV-2, transport in air. ERBV separates environmental transport from other factors in the chain of infection, allowing quantitative comparisons among situations. Particle size affects transport, removal onto surfaces, and elimination by mitigation measures, so ERBV is presented for a range of exhaled particle diameters: 1, 10, and 100 µm. Pathogen transport depends on both proximity and confinement. If interpersonal distancing of 2 m is maintained, then confinement, not proximity, dominates rebreathing after 10-15 min in enclosed spaces for all but 100 µm particles. We analyze strategies to reduce this confinement effect. Ventilation and filtration reduce person-to-person transport of 1 µm particles (ERBV1) by 13-85% in residential and office situations. Deposition to surfaces competes with intentional removal for 10 and 100 µm particles, so the same interventions reduce ERBV10 by only 3-50%, and ERBV100 is unaffected. Prior knowledge of size-dependent ERBV would help identify transmission modes and effective interventions. This framework supports mitigation decisions in emerging situations, even before other infectious parameters are known.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Aerossóis , Humanos , Pandemias , SARS-CoV-2 , Ventilação
17.
Anal Bioanal Chem ; 413(11): 2933-2941, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33615396

RESUMO

Several species of fungus from the genus Aspergillus are implicated in pulmonary infections in immunocompromised patients. Broad screening methods for fungal infections are desirable, as cultures require a considerable amount of time to provide results. Herein, we developed degradation and detection methods to produce and detect D-glucosamine (GlcN) from Aspergillus niger, a species of filamentous fungus. Ultimately, these techniques hold the potential to contribute to the diagnosis of pulmonary fungal infections in immunocompromised patients. In the following studies, we produced GlcN from fungal-derived chitin to serve as a marker for Aspergillus niger. To accomplish this, A. niger cells were lysed and subjected to a hydrochloric acid degradation protocol. Products were isolated, reconstituted in aqueous solutions, and analyzed using hydrophilic interaction liquid chromatography (HILIC) in tandem with electrospray ionization time-of-flight mass spectrometry. Our results indicated that GlcN was produced from A. niger. To validate these results, products obtained via fungal degradation were compared to products obtained from the degradation of two chitin polymers. The observed retention times and mass spectral extractions provided a two-step validation confirming that GlcN was produced from fungal-derived chitin. Our studies qualitatively illustrate that GlcN can be produced from A. niger; applying these methods to a more diverse range of fungi offers the potential to render a broad screening method for fungal detection pertinent to diagnosis of fungal infections.


Assuntos
Aspergilose/diagnóstico , Aspergillus niger/isolamento & purificação , Glucosamina/análise , Pneumopatias Fúngicas/diagnóstico , Aspergilose/microbiologia , Biomarcadores/análise , Cromatografia Líquida/métodos , Glucosamina/normas , Humanos , Pneumopatias Fúngicas/microbiologia , Padrões de Referência , Espectrometria de Massas em Tandem/métodos
18.
J Virol ; 93(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31167917

RESUMO

Lentiviral replication mediated by reverse transcriptase is considered to be highly error prone, leading to a high intra-individual evolution rate that promotes evasion of neutralization and persistent infection. Understanding lentiviral intra-individual evolutionary dynamics on a comparative basis can therefore inform research strategies to aid in studies of pathogenesis, vaccine design, and therapeutic intervention. We conducted a systematic review of intra-individual evolution rates for three species groups of lentiviruses-feline immunodeficiency virus (FIV), simian immunodeficiency virus (SIV), and human immunodeficiency virus (HIV). Overall, intra-individual rate estimates differed by virus but not by host, gene, or viral strain. Lentiviral infections in spillover (nonadapted) hosts approximated infections in primary (adapted) hosts. Our review consistently documents that FIV evolution rates within individuals are significantly lower than the rates recorded for HIV and SIV. FIV intra-individual evolution rates were noted to be equivalent to FIV interindividual rates. These findings document inherent differences in the evolution of FIV relative to that of primate lentiviruses, which may signal intrinsic difference of reverse transcriptase between these viral species or different host-viral interactions. Analysis of lentiviral evolutionary selection pressures at the individual versus population level is valuable for understanding transmission dynamics and the emergence of virulent and avirulent strains and provides novel insight for approaches to interrupt lentiviral infections.IMPORTANCE To the best of our knowledge, this is the first study that compares intra-individual evolution rates for FIV, SIV, and HIV following systematic review of the literature. Our findings have important implications for informing research strategies in the field of intra-individual virus dynamics for lentiviruses. We observed that FIV evolves more slowly than HIV and SIV at the intra-individual level and found that mutation rates may differ by gene sequence length but not by host, gene, strain, an experimental setting relative to a natural setting, or spillover host infection relative to primary host infection.


Assuntos
Evolução Biológica , Interações Hospedeiro-Patógeno , Infecções por Lentivirus/virologia , Lentivirus/fisiologia , Animais , Gatos , Evolução Molecular , Síndrome de Imunodeficiência Adquirida Felina/virologia , Variação Genética , HIV/genética , Infecções por HIV/virologia , Humanos , Vírus da Imunodeficiência Felina/genética , Lentivirus/classificação , Primatas , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética
20.
J Vet Med Educ ; 47(4): 445-451, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31721645

RESUMO

Despite many career opportunities available to veterinarians in research related fields and requirements for training in research methodologies by the American Veterinary Medical Association Council on Education (AVMA COE), formal approaches to development of veterinary curriculum related to research topics have not been widely reported. Colorado State University (CSU) offers a one-credit course that introduces first-year veterinary students to skills and career opportunities in research. Here we provide information about the course structure and content, and report outcomes of survey data that assesses the impact of the course on student appreciation and understanding of the research process. We found that most United States (US) veterinary colleges do not offer a didactic course on the research process. Student opinions of veterinary researchers were generally high, though a proportion of students (30%-40%) would have preferred a practice management class to a course on research principles. Nearly 25% of students reported that they were significantly influenced to consider research careers after taking the course. We document that this one-credit seminar course improved veterinary student perceptions of their understanding of the research process and resulted in self-reported influence of career choice.


Assuntos
Educação em Veterinária , Médicos Veterinários , Animais , Colorado , Currículo , Humanos , Estudantes , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA