Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Chemistry ; 29(50): e202301745, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37308699

RESUMO

Macrocycle formation that relies upon trans metal coordination of appropriately placed pyridine ligands within an arylene ethynylene construct provides rapid and reliable access to molecular rotators encapsulated within macrocyclic stators. Showing no significant close contacts to the central rotators, X-ray crystallography of AgI -coordinated macrocycles provides plausibility for unobstructed rotation or wobbling of rotators within the central cavity. Solid-state 13 C NMR of PdII -coordinated macrocycles supports the notion of unobstructed movement of simple arenes in the crystal lattice. Solution 1 H NMR studies indicate complete and immediate macrocycle formation upon the introduction of PdII to the pyridyl-based ligand at room temperature. Moreover, the formed macrocycle is stable in solution; a lack of significant changes in the 1 H NMR spectrum upon cooling to -50 °C is consistent with the absence of dynamic behavior. The synthetic route to these macrocycles is expedient and modular, providing access to rather complex constructs in four simple steps involving Sonogashira coupling and deprotection reactions.

2.
Chemistry ; 27(55): 13748-13756, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34339075

RESUMO

[Bis(pyridine)iodine(I)]+ complexes offer controlled access to halonium ions under mild conditions. The reactivity of such stabilized halonium ions is primarily determined by their three-center, four-electron [N-I-N]+ halogen bond. We studied the importance of chelation, strain, steric hindrance and electrostatic interaction for the structure and reactivity of halogen bonded halonium ions by acquiring their 15 N NMR coordination shifts and measuring their iodenium release rates, and interpreted the data with the support of DFT computations. A bidentate ligand stabilizes the [N-I-N]+ halogen bond, decreasing the halenium transfer rate. Strain weakens the bond and accordingly increases the release rate. Remote modifications in the backbone do not influence the stability as long as the effect is entirely steric. Incorporating an electron-rich moiety close by the [N-I-N]+ motif increases the iodenium release rate. The analysis of the iodine(I) transfer mechanism highlights the impact of secondary interactions, and may provide a handle on the induction of stereoselectivity in electrophilic halogenations.


Assuntos
Halogênios , Iodo , Elétrons , Halogenação , Iodetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA