RESUMO
Despite tremendous diversity, Asian Americans in STEM are grouped and viewed as a homogeneous monolith, facing stereotypes and disparities. We propose solutions that include disaggregating the Asian American grouping and recognizing the diverse individual ethnic subgroups that comprise Americans of Asian ancestry to implement change within the STEM field.
Assuntos
Asiático , Humanos , Estados UnidosRESUMO
The physical characteristics of brown adipose tissue (BAT) are defined by the presence of multilocular lipid droplets (LDs) within the brown adipocytes and a high abundance of iron-containing mitochondria, which give it its characteristic color. Normal mitochondrial function is, in part, regulated by organelle-to-organelle contacts. For example, the contact sites that mediate mitochondria-LD interactions are thought to have various physiological roles, such as the synthesis and metabolism of lipids. Aging is associated with mitochondrial dysfunction, and previous studies show that there are changes in mitochondrial structure and the proteins that modulate organelle contact sites. However, how mitochondria-LD interactions change with aging has yet to be fully clarified. Therefore, we sought to define age-related changes in LD morphology and mitochondria-lipid interactions in BAT. We examined the three-dimensional morphology of mitochondria and LDs in young (3-month) and aged (2-year) murine BAT using serial block face-scanning electron microscopy and the Amira program for segmentation, analysis, and quantification. Our analyses showed reductions in LD volume, area, and perimeter in aged samples in comparison to young samples. Additionally, we observed changes in LD appearance and type in aged samples compared to young samples. Notably, we found differences in mitochondrial interactions with LDs, which could implicate that these contacts may be important for energetics in aging. Upon further investigation, we also found changes in mitochondrial and cristae structure for the mitochondria interacting with LDs. Overall, these data define the nature of LD morphology and organelle-organelle contacts during aging and provide insight into LD contact site changes that interconnect biogerontology with mitochondrial function, metabolism, and bioactivity in aged BAT.
Assuntos
Tecido Adiposo Marrom , Envelhecimento , Gotículas Lipídicas , Mitocôndrias , Animais , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/ultraestrutura , Gotículas Lipídicas/metabolismo , Envelhecimento/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Metabolismo dos Lipídeos/fisiologia , Adipócitos Marrons/metabolismo , Adipócitos Marrons/ultraestrutura , MasculinoRESUMO
The sorting and assembly machinery (SAM) Complex is responsible for assembling ß-barrel proteins in the mitochondrial membrane. Comprising three subunits, Sam35, Sam37, and Sam50, the SAM complex connects the inner and outer mitochondrial membranes by interacting with the mitochondrial contact site and cristae organizing system complex. Sam50, in particular, stabilizes the mitochondrial intermembrane space bridging (MIB) complex, which is crucial for protein transport, respiratory chain complex assembly, and regulation of cristae integrity. While the role of Sam50 in mitochondrial structure and metabolism in skeletal muscle remains unclear, this study aims to investigate its impact. Serial block-face-scanning electron microscopy and computer-assisted 3D renderings were employed to compare mitochondrial structure and networking in Sam50-deficient myotubes from mice and humans with wild-type (WT) myotubes. Furthermore, autophagosome 3D structure was assessed in human myotubes. Mitochondrial metabolic phenotypes were assessed using Gas Chromatography-Mass Spectrometry-based metabolomics to explore differential changes in WT and Sam50-deficient myotubes. The results revealed increased mitochondrial fragmentation and autophagosome formation in Sam50-deficient myotubes compared to controls. Metabolomic analysis indicated elevated metabolism of propanoate and several amino acids, including ß-Alanine, phenylalanine, and tyrosine, along with increased amino acid and fatty acid metabolism in Sam50-deficient myotubes. Furthermore, impairment of oxidative capacity was observed upon Sam50 ablation in both murine and human myotubes, as measured with the XF24 Seahorse Analyzer. Collectively, these findings support the critical role of Sam50 in establishing and maintaining mitochondrial integrity, cristae structure, and mitochondrial metabolism. By elucidating the impact of Sam50-deficiency, this study enhances our understanding of mitochondrial function in skeletal muscle.
Assuntos
Fibras Musculares Esqueléticas , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , Animais , Humanos , Camundongos , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/ultraestrutura , Camundongos Knockout , Autofagia , Proteínas do Complexo de Importação de Proteína Precursora MitocondrialRESUMO
With sparse treatment options, cardiac disease remains a significant cause of death among humans. As a person ages, mitochondria breakdown and the heart becomes less efficient. Heart failure is linked to many mitochondria-associated processes, including endoplasmic reticulum stress, mitochondrial bioenergetics, insulin signaling, autophagy, and oxidative stress. The roles of key mitochondrial complexes that dictate the ultrastructure, such as the mitochondrial contact site and cristae organizing system (MICOS), in aging cardiac muscle are poorly understood. To better understand the cause of age-related alteration in mitochondrial structure in cardiac muscle, we used transmission electron microscopy (TEM) and serial block facing-scanning electron microscopy (SBF-SEM) to quantitatively analyze the three-dimensional (3-D) networks in cardiac muscle samples of male mice at aging intervals of 3 mo, 1 yr, and 2 yr. Here, we present the loss of cristae morphology, the inner folds of the mitochondria, across age. In conjunction with this, the three-dimensional (3-D) volume of mitochondria decreased. These findings mimicked observed phenotypes in murine cardiac fibroblasts with CRISPR/Cas9 knockout of Mitofilin, Chchd3, Chchd6 (some members of the MICOS complex), and Opa1, which showed poorer oxidative consumption rate and mitochondria with decreased mitochondrial length and volume. In combination, these data show the need to explore if loss of the MICOS complex in the heart may be involved in age-associated mitochondrial and cristae structural changes.NEW & NOTEWORTHY This article shows how mitochondria in murine cardiac changes, importantly elucidating age-related changes. It also is the first to show that the MICOS complex may play a role in outer membrane mitochondrial structure.
Assuntos
Mitocôndrias , Miocárdio , Humanos , Masculino , Camundongos , Animais , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Coração , Envelhecimento , Transdução de Sinais , Proteínas Mitocondriais/metabolismoRESUMO
Mitochondria are hubs of metabolism and signaling and play an important role in tumorigenesis, therapeutic resistance, and metastasis in many cancer types. Various laboratory models of cancer demonstrate the extraordinary dynamics of mitochondrial structure, but little is known about the role of mitochondrial structure in resistance to anticancer therapy. We previously demonstrated the importance of mitochondrial structure and oxidative phosphorylation in the survival of chemotherapy-refractory triple negative breast cancer (TNBC) cells. As TNBC is a highly aggressive breast cancer subtype with few targeted therapy options, conventional chemotherapies remain the backbone of early TNBC treatment. Unfortunately, approximately 45% of TNBC patients retain substantial residual tumor burden following chemotherapy, associated with abysmal prognoses. Using an orthotopic patient-derived xenograft mouse model of human TNBC, we compared mitochondrial structures between treatment-naïve tumors and residual tumors after conventional chemotherapeutics were administered singly or in combination. We reconstructed 1,750 mitochondria in three dimensions from serial block-face scanning electron micrographs, providing unprecedented insights into the complexity and intra-tumoral heterogeneity of mitochondria in TNBC. Following exposure to carboplatin or docetaxel given individually, residual tumor mitochondria exhibited significant increases in mitochondrial complexity index, area, volume, perimeter, width, and length relative to treatment-naïve tumor mitochondria. In contrast, residual tumors exposed to those chemotherapies given in combination exhibited diminished mitochondrial structure changes. Further, we document extensive intra-tumoral heterogeneity of mitochondrial structure, especially prior to chemotherapeutic exposure. These results highlight the potential for structure-based monitoring of chemotherapeutic responses and reveal potential molecular mechanisms that underlie chemotherapeutic resistance in TNBC.
RESUMO
Mitochondria are required for energy production and even give brown adipose tissue (BAT) its characteristic color due to their high iron content and abundance. The physiological function and bioenergetic capacity of mitochondria are connected to the structure, folding, and organization of its inner-membrane cristae. During the aging process, mitochondrial dysfunction is observed, and the regulatory balance of mitochondrial dynamics is often disrupted, leading to increased mitochondrial fragmentation in aging cells. Therefore, it is hypothesized that significant morphological changes in BAT mitochondria and cristae will be present with aging. A quantitative 3D electron microscopy approach is developed to map cristae network organization in mouse BAT to test this hypothesis. Using this methodology, the 3D morphology of mitochondrial cristae is investigated in adult (3-month) and aged (2-year) murine BAT tissue via serial block face-scanning electron microscopy (SBF-SEM) and 3D reconstruction software for manual segmentation, analysis, and quantification. Upon investigation, an increase is found in mitochondrial volume, surface area, and complexity and decreased sphericity in aged BAT, alongside significant decreases in cristae volume, area, perimeter, and score. Overall, these data define the nature of the mitochondrial structure in murine BAT across aging.
Assuntos
Tecido Adiposo Marrom , Membranas Mitocondriais , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Mitocôndrias/metabolismo , Metabolismo Energético/fisiologia , EnvelhecimentoRESUMO
The physical characteristics of brown adipose tissue (BAT) are defined by the presence of multilocular lipid droplets (LD) within the brown adipocytes and a high abundance of iron-containing mitochondria, which give it its characteristic color. Normal mitochondrial function is, in part, regulated by organelle-to-organelle contacts. Particularly, the contact sites that mediate mitochondria-LD interactions are thought to have various physiological roles, such as the synthesis and metabolism of lipids. Aging is associated with mitochondrial dysfunction, and previous studies show that there are changes in mitochondrial structure and proteins that modulate organelle contact sites. However, how mitochondria-LD interactions change with aging has yet to be fully clarified. Therefore, we sought to define age-related changes in LD morphology and mitochondria-lipid interactions in BAT. We examined the three-dimensional morphology of mitochondria and LDs in young (3-month) and aged (2-year) murine BAT using serial block face-scanning electron microscopy and the Amira program for segmentation, analysis, and quantification. Analysis showed reductions in LD volume, area, and perimeter in aged samples compared to young samples. Additionally, we observed changes in LD appearance and type in aged samples compared to young samples. Notably, we found differences in mitochondrial interactions with LDs, which could implicate that these contacts may be important for energetics in aging. Upon further investigation, we also found changes in mitochondrial and cristae structure for mitochondria interacting with LD lipids. Overall, these data define the nature of LD morphology and organelle-organelle contacts during aging and provide insight into LD contact site changes that interconnect biogerontology and mitochondrial functionality, metabolism, and bioactivity in aged BAT.
RESUMO
Age-related atrophy of skeletal muscle, is characterized by loss of mass, strength, endurance, and oxidative capacity during aging. Notably, bioenergetics and protein turnover studies have shown that mitochondria mediate this decline in function. Although exercise has been the only therapy to mitigate sarcopenia, the mechanisms that govern how exercise serves to promote healthy muscle aging are unclear. Mitochondrial aging is associated with decreased mitochondrial capacity, so we sought to investigate how aging affects mitochondrial structure and potential age-related regulators. Specifically, the three-dimensional (3D) mitochondrial structure associated with morphological changes in skeletal muscle during aging requires further elucidation. We hypothesized that aging causes structural remodeling of mitochondrial 3D architecture representative of dysfunction, and this effect is mitigated by exercise. We used serial block-face scanning electron microscopy to image human skeletal tissue samples, followed by manual contour tracing using Amira software for 3D reconstruction and subsequent analysis of mitochondria. We then applied a rigorous in vitro and in vivo exercise regimen during aging. Across 5 human cohorts, we correlate differences in magnetic resonance imaging, mitochondria 3D structure, exercise parameters, and plasma immune markers between young (under 50 years) and old (over 50 years) individuals. We found that mitochondria we less spherical and more complex, indicating age-related declines in contact site capacity. Additionally, aged samples showed a larger volume phenotype in both female and male humans, indicating potential mitochondrial swelling. Concomitantly, muscle area, exercise capacity, and mitochondrial dynamic proteins showed age-related losses. Exercise stimulation restored mitofusin 2 (MFN2), one such of these mitochondrial dynamic proteins, which we show is required for the integrity of mitochondrial structure. Furthermore, we show that this pathway is evolutionarily conserved as Marf, the MFN2 ortholog in Drosophila, knockdown alters mitochondrial morphology and leads to the downregulation of genes regulating mitochondrial processes. Our results define age-related structural changes in mitochondria and further suggest that exercise may mitigate age-related structural decline through modulation of mitofusin 2.
RESUMO
The liver, the largest internal organ and a metabolic hub, undergoes significant declines due to aging, affecting mitochondrial function and increasing the risk of systemic liver diseases. How the mitochondrial three-dimensional (3D) structure changes in the liver across aging, and the biological mechanisms regulating such changes confers remain unclear. In this study, we employed Serial Block Face-Scanning Electron Microscopy (SBF-SEM) to achieve high-resolution 3D reconstructions of murine liver mitochondria to observe diverse phenotypes and structural alterations that occur with age, marked by a reduction in size and complexity. We also show concomitant metabolomic and lipidomic changes in aged samples. Aged human samples reflected altered disease risk. To find potential regulators of this change, we examined the Mitochondrial Contact Site and Cristae Organizing System (MICOS) complex, which plays a crucial role in maintaining mitochondrial architecture. We observe that the MICOS complex is lost during aging, but not Sam50. Sam50 is a component of the sorting and assembly machinery (SAM) complex that acts in tandem with the MICOS complex to modulate cristae morphology. In murine models subjected to a high-fat diet, there is a marked depletion of the mitochondrial protein SAM50. This reduction in Sam50 expression may heighten the susceptibility to liver disease, as our human biobank studies corroborate that Sam50 plays a genetically regulated role in the predisposition to multiple liver diseases. We further show that changes in mitochondrial calcium dysregulation and oxidative stress accompany the disruption of the MICOS complex. Together, we establish that a decrease in mitochondrial complexity and dysregulated metabolism occur with murine liver aging. While these changes are partially be regulated by age-related loss of the MICOS complex, the confluence of a murine high-fat diet can also cause loss of Sam50, which contributes to liver diseases. In summary, our study reveals potential regulators that affect age-related changes in mitochondrial structure and metabolism, which can be targeted in future therapeutic techniques.
RESUMO
The kidney filters nutrient waste and bodily fluids from the bloodstream, in addition to secondary functions of metabolism and hormone secretion, requiring an astonishing amount of energy to maintain its functions. In kidney cells, mitochondria produce adenosine triphosphate (ATP) and help maintain kidney function. Due to aging, the efficiency of kidney functions begins to decrease. Dysfunction in mitochondria and cristae, the inner folds of mitochondria, is a hallmark of aging. Therefore, age-related kidney function decline could be due to changes in mitochondrial ultrastructure, increased reactive oxygen species (ROS), and subsequent alterations in metabolism and lipid composition. We sought to understand if there is altered mitochondrial ultrastructure, as marked by 3D morphological changes, across time in tubular kidney cells. Serial block facing-scanning electron microscope (SBF-SEM) and manual segmentation using the Amira software were used to visualize murine kidney samples during the aging process at 3 months (young) and 2 years (old). We found that 2-year mitochondria are more fragmented, compared to the 3-month, with many uniquely shaped mitochondria observed across aging, concomitant with shifts in ROS, metabolomics, and lipid homeostasis. Furthermore, we show that the mitochondrial contact site and cristae organizing system (MICOS) complex is impaired in the kidney due to aging. Disruption of the MICOS complex shows altered mitochondrial calcium uptake and calcium retention capacity, as well as generation of oxidative stress. We found significant, detrimental structural changes to aged kidney tubule mitochondria suggesting a potential mechanism underlying why kidney diseases occur more readily with age. We hypothesize that disruption in the MICOS complex further exacerbates mitochondrial dysfunction, creating a vicious cycle of mitochondrial degradation and oxidative stress, thus impacting kidney health.
RESUMO
Isolation of skeletal muscles allows for the exploration of many complex diseases. Here, we present a protocol for isolating mice skeletal muscle myoblasts and myotubes that have been differentiated through antibody validation. We describe steps for collecting and preparing murine skeletal tissue, myoblast cell maintenance, plating, and cell differentiation. We then detail procedures for cell incubation, immunostaining, slide preparation and storage, and imaging for immunofluorescence validation.
Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Camundongos , Animais , Mioblastos , Diferenciação Celular/fisiologia , ImunofluorescênciaRESUMO
Serial block face scanning electron microscopy (SBF-SEM), also referred to as serial block-face electron microscopy, is an advanced ultrastructural imaging technique that enables three-dimensional visualization that provides largerx- and y-axis ranges than other volumetric EM techniques. While SEM is first introduced in the 1930s, SBF-SEM is developed as a novel method to resolve the 3D architecture of neuronal networks across large volumes with nanometer resolution by Denk and Horstmann in 2004. Here, the authors provide an accessible overview of the advantages and challenges associated with SBF-SEM. Beyond this, the applications of SBF-SEM in biochemical domains as well as potential future clinical applications are briefly reviewed. Finally, the alternative forms of artificial intelligence-based segmentation which may contribute to devising a feasible workflow involving SBF-SEM, are also considered.
Assuntos
Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Varredura/métodos , Humanos , Animais , Inteligência ArtificialRESUMO
Machine learning has proven useful in analyzing complex biological data and has greatly influenced the course of research in structural biology and precision medicine. Deep neural network models oftentimes fail to predict the structure of complex proteins and are heavily dependent on experimentally determined structures for their training and validation. Single-particle cryogenic electron microscopy (cryoEM) is also advancing the understanding of biology and will be needed to complement these models by continuously supplying high-quality experimentally validated structures for improvements in prediction quality. In this perspective, the significance of structure prediction methods is highlighted, but the authors also ask, what if these programs cannot accurately predict a protein structure important for preventing disease? The role of cryoEM is discussed to help fill the gaps left by artificial intelligence predictive models in resolving targetable proteins and protein complexes that will pave the way for personalized therapeutics.
Assuntos
Inteligência Artificial , Medicina de Precisão , Microscopia Crioeletrônica/métodos , Aprendizado de Máquina , Redes Neurais de ComputaçãoRESUMO
OPA1 is a dynamin-related GTPase that modulates various mitochondrial functions and is involved in mitochondrial morphology. There are eight different isoforms of OPA1 in humans and five different isoforms in mice that are expressed as short or long-form isoforms. These isoforms contribute to OPA1's ability to control mitochondrial functions. However, isolating OPA1 all long and short isoforms through western blot has been a difficult task. To address this issue, we outline an optimized western blot protocol to isolate 5 different isoforms of OPA1 on the basis of different antibodies. This protocol can be used to study changes in mitochondrial structure and function.
RESUMO
Proximity ligation assays (PLA) use specific antibodies to detect endogenous protein-protein interactions. PLA is a highly useful biochemical technique that allows two proteins within close proximity to be visualized with fluorescent probes amplified by PCR. While this technique has gained prominence, the use of PLA in mouse skeletal muscle (SkM) is novel. In this article, we discuss how the PLA method can be used in SkM to study the protein-protein interactions within mitochondria-endoplasmic reticulum contact sites (MERCs).
RESUMO
Isolation of skeletal muscles allows for the exploration of many complex diseases. Fibroblasts and myoblast play important roles in skeletal muscle morphology and function. However, skeletal muscles are complex and made up of many cellular populations and validation of these populations is highly important. Therefore, in this article, we discuss a comprehensive method to isolate mice skeletal muscle, create satellite cells for tissue culture, and use immunofluorescence to validate our approach.
RESUMO
In the original publication [...].
RESUMO
Various intracellular degradation organelles, including autophagosomes, lysosomes, and endosomes, work in tandem to perform autophagy, which is crucial for cellular homeostasis. Altered autophagy contributes to the pathophysiology of various diseases, including cancers and metabolic diseases. This paper aims to describe an approach to reproducibly identify and distinguish subcellular structures involved in macroautophagy. Methods are provided that help avoid common pitfalls. How to distinguish between lysosomes, lipid droplets, autolysosomes, autophagosomes, and inclusion bodies are also discussed. These methods use transmission electron microscopy (TEM), which is able to generate nanometer-scale micrographs of cellular degradation components in a fixed sample. Serial block face-scanning electron microscopy is also used to visualize the 3D morphology of degradation machinery using the Amira software. In addition to TEM and 3D reconstruction, other imaging techniques are discussed, such as immunofluorescence and immunogold labeling, which can be used to classify cellular organelles, reliably and accurately. Results show how these methods may be used to accurately quantify cellular degradation machinery under various conditions, such as treatment with the endoplasmic reticulum stressor thapsigargin or ablation of the dynamin-related protein 1.