Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Physiol Plant ; 175(5): e14021, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882311

RESUMO

A fully mechanistic dynamical model for plant nitrate uptake is presented. Based on physiological and regulatory pathways and based on physical laws, we form a dynamic system mathematically described by seven differential equations. The model evidences the presence of a short-term positive feedback on the high-affinity nitrate uptake, triggered by the presence of nitrate around the roots, which induces its intaking. In the long run, this positive feedback is overridden by two long-term negative feedback loops which drastically reduces the nitrate uptake capacity. These two negative feedbacks are due to the generation of ammonium and amino acids, respectively, and inhibit the synthesis and the activity of high-affinity nitrate transporters. This model faithfully predicts the typical spiking behavior of the nitrate uptake, in which an initial strong increase of nitrate absorption capacity is followed by a drop, which regulates the absorption down to the initial value. The model outcome was compared with experimental data and they fit quite nicely. The model predicts that after the initial exposure of the roots with nitrate, the absorption of the anion strongly increases and that, on the contrary, the intensity of the absorption is limited in presence of ammonium around the roots.


Assuntos
Compostos de Amônio , Nitratos , Nitratos/farmacologia , Nitratos/metabolismo , Zea mays/metabolismo , Transportadores de Nitrato , Plantas/metabolismo , Compostos de Amônio/metabolismo , Raízes de Plantas/metabolismo , Nitrogênio/metabolismo
2.
Physiol Plant ; 174(1): e13607, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34837246

RESUMO

The low bioavailability of nutrients, especially nitrogen (N) and phosphorus (P), is one of the most limiting factors for crop production. In this study, under N- and P-free nutrient solution (-N-P), nodulating white lupin plants developed some nodules and analogous cluster root structures characterized by different morphological, physiological, and molecular responses than those observed upon single nutrient deficiency (strong acidification of external media, a better nutritional status than -N+P and +N-P plants). The multi-elemental analysis highlighted that the concentrations of nutrients in white lupin plants were mainly affected by P availability. Gene-expression analyses provided evidence of interconnections between N and P nutritional pathways that are active to promote N and P balance in plants. The root exudome was mainly characterized by N availability in nutrient solution, and, in particular, the absence of N and P in the nutrient solution triggered a high release of phenolic compounds, nucleosides monophosphate and saponines by roots. These morphological, physiological, and molecular responses result from a close interplay between N and P nutritional pathways. They contribute to the good development of nodulating white lupin plants when grown on N- and P-free media. This study provides evidence that limited N and P availability in the nutrient solution can promote white lupin-Bradyrhizobium symbiosis, which is favourable for the sustainability of legume production.


Assuntos
Bradyrhizobium , Lupinus , Bradyrhizobium/fisiologia , Lupinus/metabolismo , Fixação de Nitrogênio/fisiologia , Fósforo/metabolismo , Raízes de Plantas/metabolismo
3.
BMC Plant Biol ; 19(1): 148, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30991946

RESUMO

BACKGROUND: Magnesium (Mg) deficiency causes physiological and molecular responses, already dissected in several plant species. The study of these responses among genotypes showing a different tolerance to the Mg shortage can allow identifying the mechanisms underlying the resistance to this nutritional disorder. To this aim, we compared the physiological and molecular responses (e.g. changes in root metabolome and transcriptome) of two grapevine rootstocks exhibiting, in field, different behaviors with respect to Mg shortage (1103P, tolerant and SO4 susceptible). RESULTS: The two grapevine rootstocks confirmed, in a controlled growing system, their behavior in relation to the tolerance to Mg deficiency. Differences in metabolite and transcriptional profiles between the roots of the two genotypes were mainly linked to antioxidative compounds and the cell wall constituents. In addition, differences in secondary metabolism, in term of both metabolites (e.g. alkaloids, terpenoids and phenylpropanoids) and transcripts, assessed between 1103P and SO4 suggest a different behavior in relation to stress responses particularly at early stages of Mg deficiency. CONCLUSIONS: Our results suggested that the higher ability of 1103P to tolerate Mg shortage is mainly linked to its capability of coping, faster and more efficiently, with the oxidative stress condition caused by the nutritional disorder.


Assuntos
Adaptação Psicológica , Magnésio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/fisiologia , Vitis/fisiologia , Adaptação Psicológica/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metaboloma , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solubilidade , Açúcares/metabolismo , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Vitis/efeitos dos fármacos , Vitis/genética
4.
Int J Mol Sci ; 20(19)2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31574923

RESUMO

Nitrogen use efficiency (NUE) of crops is estimated to be less than 50%, with a strong impact on environment and economy. Genotype-dependent ability to cope with N shortage has been only partially explored in maize and, in this context, the comparison of molecular responses of lines with different NUE is of particular interest in order to dissect the key elements underlying NUE. Changes in root transcriptome and NH4+/NO3- uptake rates during growth (after 1 and 4 days) without N were studied in high (Lo5) and low (T250) NUE maize inbred lines. Results suggests that only a small set of transcripts were commonly modulated in both lines in response to N starvation. However, in both lines, transcripts linked to anthocyanin biosynthesis and lateral root formation were positively affected. On the contrary, those involved in root elongation were downregulated. The main differences between the two lines reside in the ability to modulate the transcripts involved in the transport, distribution and assimilation of mineral nutrients. With regard to N mineral forms, only the Lo5 line responded to N starvation by increasing the NH4+ fluxes as supported by the upregulation of a transcript putatively involved in its transport.


Assuntos
Nitrogênio/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Transcrição Gênica , Zea mays/genética , Zea mays/metabolismo , Endogamia , Melhoramento Vegetal
5.
BMC Genomics ; 18(1): 154, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28193158

RESUMO

BACKGROUND: Under limited iron (Fe) availability maize, a Strategy II plant, improves Fe acquisition through the release of phytosiderophores (PS) into the rhizosphere and the subsequent uptake of Fe-PS complexes into root cells. Occurrence of Strategy-I-like components and interactions with phosphorous (P) nutrition has been hypothesized based on molecular and physiological studies in grasses. RESULTS: In this report transcriptomic analysis (NimbleGen microarray) of Fe deficiency response revealed that maize roots modulated the expression levels of 724 genes (508 up- and 216 down-regulated, respectively). As expected, roots of Fe-deficient maize plants overexpressed genes involved in the synthesis and release of 2'-deoxymugineic acid (the main PS released by maize roots). A strong modulation of genes involved in regulatory aspects, Fe translocation, root morphological modification, primary metabolic pathways and hormonal metabolism was induced by the nutritional stress. Genes encoding transporters for Fe2+ (ZmNRAMP1) and P (ZmPHT1;7 and ZmPHO1) were also up-regulated under Fe deficiency. Fe-deficient maize plants accumulated higher amounts of P than the Fe-sufficient ones, both in roots and shoots. The supply of 1 µM 59Fe, as soluble (Fe-Citrate and Fe-PS) or sparingly soluble (Ferrihydrite) sources to deficient plants, caused a rapid down-regulation of genes coding for PS and Fe(III)-PS transport, as well as of ZmNRAMP1 and ZmPHT1;7. Levels of 32P absorption essentially followed the rates of 59Fe uptake in Fe-deficient plants during Fe resupply, suggesting that P accumulation might be regulated by Fe uptake in maize plants. CONCLUSIONS: The transcriptional response to Fe-deficiency in maize roots confirmed the modulation of known genes involved in the Strategy II and revealed the presence of Strategy I components usually described in dicots. Moreover, data here presented provide evidence of a close relationship between two essential nutrients for plants, Fe and P, and highlight a key role played by Fe and P transporters to preserve the homeostasis of these two nutrients in maize plants.


Assuntos
Perfilação da Expressão Gênica , Deficiências de Ferro , Fosfatos/metabolismo , Transcriptoma , Zea mays/genética , Zea mays/metabolismo , Compostos Férricos/química , Compostos Férricos/metabolismo , Regulação da Expressão Gênica de Plantas , Ferro/química , Ferro/metabolismo , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Solubilidade
6.
BMC Genomics ; 17: 35, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26742479

RESUMO

BACKGROUND: It is well known that in the rhizosphere soluble Fe sources available for plants are mainly represented by a mixture of complexes between the micronutrient and organic ligands such as carboxylates and phytosiderophores (PS) released by roots, as well as fractions of humified organic matter. The use by roots of these three natural Fe sources (Fe-citrate, Fe-PS and Fe complexed to water-extractable humic substances, Fe-WEHS) have been already studied at physiological level but the knowledge about the transcriptomic aspects is still lacking. RESULTS: The (59)Fe concentration recorded after 24 h in tissues of tomato Fe-deficient plants supplied with (59)Fe complexed to WEHS reached values about 2 times higher than those measured in response to the supply with Fe-citrate and Fe-PS. However, after 1 h no differences among the three Fe-chelates were observed considering the (59)Fe concentration and the root Fe(III) reduction activity. A large-scale transcriptional analysis of root tissue after 1 h of Fe supply showed that Fe-WEHS modulated only two transcripts leaving the transcriptome substantially identical to Fe-deficient plants. On the other hand, Fe-citrate and Fe-PS affected 728 and 408 transcripts, respectively, having 289 a similar transcriptional behaviour in response to both Fe sources. CONCLUSIONS: The root transcriptional response to the Fe supply depends on the nature of chelating agents (WEHS, citrate and PS). The supply of Fe-citrate and Fe-PS showed not only a fast back regulation of molecular mechanisms modulated by Fe deficiency but also specific responses due to the uptake of the chelating molecule. Plants fed with Fe-WEHS did not show relevant changes in the root transcriptome with respect to the Fe-deficient plants, indicating that roots did not sense the restored cellular Fe accumulation.


Assuntos
Compostos Férricos/farmacologia , Proteínas de Plantas/biossíntese , Raízes de Plantas/genética , Solanum lycopersicum/genética , Quelantes/química , Compostos Férricos/química , Ferro/química , Ferro/metabolismo , Ligantes , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Sideróforos/química
7.
Plant Cell Physiol ; 56(3): 532-48, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25524070

RESUMO

Even though urea and nitrate are the two major nitrogen (N) forms applied as fertilizers in agriculture and occur concomitantly in soils, the reciprocal influence of these two N sources on the mechanisms of their acquisition are poorly understood. Therefore, molecular and physiological aspects of urea and nitrate uptake were investigated in maize (Zea mays), a crop plant consuming high amounts of N. In roots, urea uptake was stimulated by the presence of urea in the external solution, indicating the presence of an inducible transport system. On the other hand, the presence of nitrate depressed the induction of urea uptake and, at the same time, the induction of nitrate uptake was depressed by the presence of urea. The expression of about 60,000 transcripts of maize in roots was monitored by microarray analyses and the transcriptional patterns of those genes involved in nitrogen acquisition were analyzed by real-time reverse transcription-PCR (RT-PCR). In comparison with the treatment without added N, the exposure of maize roots to urea modulated the expression of only very few genes, such as asparagine synthase. On the other hand, the concomitant presence of urea and nitrate enhanced the overexpression of genes involved in nitrate transport (NRT2) and assimilation (nitrate and nitrite reductase, glutamine synthetase 2), and a specific response of 41 transcripts was determined, including glutamine synthetase 1-5, glutamine oxoglutarate aminotransferase, shikimate kinase and arogenate dehydrogenase. Also based on the real-time RT-PCR analysis, the transcriptional modulation induced by both sources might determine an increase in N metabolism promoting a more efficient assimilation of the N that is taken up.


Assuntos
Nitratos/metabolismo , Nitrogênio/metabolismo , Transcriptoma/genética , Ureia/metabolismo , Zea mays/genética , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Biomassa , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Nitratos/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Gênica/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Ureia/farmacologia , Zea mays/efeitos dos fármacos
8.
J Integr Plant Biol ; 56(11): 1080-94, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24805158

RESUMO

In higher plants, NO3(-) can induce its own uptake and the magnitude of this induction is positively related to the external anion concentration. This phenomenon has been characterized in both herbaceous and woody plants. Here, different adaptation strategies of roots from two maize (Zea mays L., ZmAGOs) inbred lines differing in nitrogen use efficiency (NUE) and exhibiting different timing of induction were discussed by investigating NO3(-) -induced changes in their transcriptome. Lo5 line (high NUE) showing the maximum rate of NO3(-) uptake 4 h after the provision of 200 µmol/L NO3(-) treatment modulated a higher number of transcripts relative to T250 (low NUE) that peaked after 12 h. The two inbred lines share only 368 transcripts that are modulated by the treatment with NO3(-) and behaved differently when transcripts involved in anion uptake and assimilation were analyzed. T250 line responded to the NO3(-) induction modulating this group of genes as reported for several plant species. On the contrary, the Lo5 line did not exhibit during the induction changes in this set of genes. Obtained data suggest the importance of exploring the physiological and molecular variations among different maize genotypes in response to environmental clues like NO3(-) provision, in order to understand mechanisms underlying NUE.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Endogamia , Nitratos/farmacologia , Nitrogênio/farmacologia , Transcrição Gênica/efeitos dos fármacos , Zea mays/genética , Perfilação da Expressão Gênica , Nitratos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Fatores de Tempo , Zea mays/efeitos dos fármacos
9.
BMC Genomics ; 13: 101, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22433273

RESUMO

BACKGROUND: Plants react to iron deficiency stress adopting different kind of adaptive responses. Tomato, a Strategy I plant, improves iron uptake through acidification of rhizosphere, reduction of Fe3+ to Fe2+ and transport of Fe2+ into the cells. Large-scale transcriptional analyses of roots under iron deficiency are only available for a very limited number of plant species with particular emphasis for Arabidopsis thaliana. Regarding tomato, an interesting model species for Strategy I plants and an economically important crop, physiological responses to Fe-deficiency have been thoroughly described and molecular analyses have provided evidence for genes involved in iron uptake mechanisms and their regulation. However, no detailed transcriptome analysis has been described so far. RESULTS: A genome-wide transcriptional analysis, performed with a chip that allows to monitor the expression of more than 25,000 tomato transcripts, identified 97 differentially expressed transcripts by comparing roots of Fe-deficient and Fe-sufficient tomato plants. These transcripts are related to the physiological responses of tomato roots to the nutrient stress resulting in an improved iron uptake, including regulatory aspects, translocation, root morphological modification and adaptation in primary metabolic pathways, such as glycolysis and TCA cycle. Other genes play a role in flavonoid biosynthesis and hormonal metabolism. CONCLUSIONS: The transcriptional characterization confirmed the presence of the previously described mechanisms to adapt to iron starvation in tomato, but also allowed to identify other genes potentially playing a role in this process, thus opening new research perspectives to improve the knowledge on the tomato root response to the nutrient deficiency.


Assuntos
Genômica , Deficiências de Ferro , Análise de Sequência com Séries de Oligonucleotídeos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Adaptação Fisiológica/genética , Transporte Biológico/genética , Metabolismo dos Carboidratos/genética , Flavonoides/biossíntese , Perfilação da Expressão Gênica , Homeostase/genética , Hormônios/metabolismo , Solanum lycopersicum/anatomia & histologia , Solanum lycopersicum/citologia , Metionina/metabolismo , Estresse Oxidativo/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Transcrição Gênica/genética
10.
BMC Plant Biol ; 12: 66, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22571503

RESUMO

BACKGROUND: The mechanisms by which nitrate is transported into the roots have been characterized both at physiological and molecular levels. It has been demonstrated that nitrate is taken up in an energy-dependent way by a four-component uptake machinery involving high- and low- affinity transport systems. In contrast very little is known about the physiology of nitrate transport towards different plant tissues and in particular at the leaf level. RESULTS: The mechanism of nitrate uptake in leaves of cucumber (Cucumis sativus L. cv. Chinese long) plants was studied and compared with that of the root. Net nitrate uptake by roots of nitrate-depleted cucumber plants proved to be substrate-inducible and biphasic showing a saturable kinetics with a clear linear non saturable component at an anion concentration higher than 2 mM. Nitrate uptake by leaf discs of cucumber plants showed some similarities with that operating in the roots (e.g. electrogenic H+ dependence via involvement of proton pump, a certain degree of induction). However, it did not exhibit typical biphasic kinetics and was characterized by a higher Km with values out of the range usually recorded in roots of several different plant species. The quantity and activity of plasma membrane (PM) H+-ATPase of the vesicles isolated from leaf tissues of nitrate-treated plants for 12 h (peak of nitrate foliar uptake rate) increased with respect to that observed in the vesicles isolated from N-deprived control plants, thus suggesting an involvement of this enzyme in the leaf nitrate uptake process similar to that described in roots. Molecular analyses suggest the involvement of a specific isoform of PM H+-ATPase (CsHA1) and NRT2 transporter (CsNRT2) in root nitrate uptake. At the leaf level, nitrate treatment modulated the expression of CsHA2, highlighting a main putative role of this isogene in the process. CONCLUSIONS: Obtained results provide for the first time evidence that a saturable and substrate-inducible nitrate uptake mechanism operates in cucumber leaves. Its activity appears to be related to that of PM H+-ATPase activity and in particular to the induction of CsHA2 isoform. However the question about the molecular entity responsible for the transport of nitrate into leaf cells therefore still remains unresolved.


Assuntos
Membrana Celular/enzimologia , Cucumis sativus/enzimologia , Nitratos/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Transporte Biológico , Membrana Celular/genética , Membrana Celular/metabolismo , Cucumis sativus/genética , Cucumis sativus/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , ATPases Translocadoras de Prótons/genética , Regulação para Cima
11.
Planta ; 236(6): 1701-12, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22983671

RESUMO

Cadmium (Cd) detoxification involves glutathione and phytochelatins biosynthesis: the higher need of nitrogen should require increased nitrate (NO(3)(-)) uptake and metabolism. We investigated inducible high-affinity NO(3)(-) uptake across the plasma membrane (PM) in maize seedlings roots upon short exposure (10 min to 24 h) to low Cd concentrations (0, 1 or 10 µM): the activity and gene transcript abundance of high-affinity NO(3)(-) transporters, NO(3)(-) reductases and PM H(+)-ATPases were analyzed. Exposure to 1 mM NO(3)(-) led to a peak in high-affinity (0.2 mM) NO(3)(-) uptake rate (induction), which was markedly lowered in Cd-treated roots. Plasma membrane H(+)-ATPase activity was also strongly limited, while internal NO(3)(-) accumulation and NO(3)(-) reductase activity in extracts of Cd treated roots were only slightly lowered. Kinetics of high- and low-affinity NO(3)(-) uptake showed that Cd rapidly (10 min) blocked the inducible high-affinity transport system; the constitutive high-affinity transport system appeared not vulnerable to Cd and the low-affinity transport system appeared to be less affected and only after a prolonged exposure (12 h). Cd-treatment also modified transcript levels of genes encoding high-affinity NO(3)(-) transporters (ZmNTR2.1, ZmNRT2.2), PM H(+)-ATPases (ZmMHA3, ZmMHA4) and NO(3)(-) reductases (ZmNR1, ZmNADH:NR). Despite an expectable increase in NO(3)(-) demand, a negative effect of Cd on NO(3)(-) nutrition is reported. Cd effect results in alterations at the physiological and transcriptional levels of NO(3)(-) uptake from the external solution and it is particularly severe on the inducible high-affinity anion transport system. Furthermore, Cd would limit the capacity of the plant to respond to changes in NO(3) (-) availability.


Assuntos
Cádmio/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nitratos/metabolismo , Proteínas de Plantas/genética , Zea mays/efeitos dos fármacos , Transporte Biológico , Cádmio/análise , Membrana Celular/enzimologia , Cinética , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Nitratos/análise , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , RNA Mensageiro/genética , RNA de Plantas/genética , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo , Zea mays/genética , Zea mays/metabolismo
12.
Front Plant Sci ; 13: 964088, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991452

RESUMO

The application of synthetic Fe-chelates stands for the most established agronomical practice to alleviate lime-induced chlorosis, which still constitutes a major agronomic problem. However, the percolation through the soil profile due to the negative charge of the most deployed molecules results in agronomical and environmental problems. H2bpcd/Fe3+ complex features distinctive chemical characteristics, including moderate stability of the Fe(bpcd)+ species (logß ML = 20.86) and a total positive charge, and we studied its behavior in soil and regreening effects on cucumber plants. Soil column experiments have underlined that H2bpcd/Fe3+ is retained in more amounts than EDDHA/Fe3+. The new ligand was not proven to be toxic for the cucumber and maize seedlings. A concentration of 20 µM H2bpcd/Fe3+ attained regreening of Fe-deficient cucumber plants grown in the hydroponic solution supplied with CaCO3, similar to that shown by EDDHA/Fe3+. Experiments with a 2 µM concentration of 57Fe showed that cucumber roots absorbed H2bpcd/57Fe3+ at a slower rate than EDTA/57Fe3+. The high kinetic inertness of H2bpcd/Fe3+ may explain such behavior.

13.
J Agric Food Chem ; 70(36): 11201-11211, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36039940

RESUMO

Protein hydrolysates (PHs) are plant biostimulants consisting of oligopeptides and free amino acids exploited in agriculture to increase crop productivity. This work aimed to fractionate a commercial collagen-derived protein hydrolysate (CDPH) according to the molecular mass of the peptides and evaluate the bioactivity of different components. First, the CDPH was dialyzed and/or filtrated and analyzed on maize, showing that smaller compounds were particularly active in stimulating lateral root growth. The CDPH was then fractionated through fast protein liquid chromatography and tested on in vitro grown tomatoes proving that all the fractions were bioactive. Furthermore, these fractions were characterized by liquid chromatography-electrospray ionization-tandem mass spectrometry revealing a consensus sequence shared among the identified peptides. Based on this sequence, a synthetic peptide was produced. We assessed its structural similarity with the CDPH, the collagen, and polyproline type II helix by comparing the respective circular dichroism spectra and for the first time, we proved that a signature peptide was as bioactive as the whole CDPH.


Assuntos
Peptídeos , Hidrolisados de Proteína , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Colágeno/química , Peptídeos/química , Hidrolisados de Proteína/química
14.
Algal Res ; 602021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34745855

RESUMO

Nitrogen deficiency and drought stress are among the major stresses faced by plants with negative consequence on crop production. The use of plant biostimulants is a very promising application in agriculture to improve crop yield, but especially to prevent the effect of abiotic stresses. Algae-derived biostimulants represent an efficient tool to stimulate the root development: while macroalgae have already been widely adopted as a source of biostimulants to improve plants growth and resilience, far less information is available for microalgae. The objective of this work is to investigate the stimulant ability on maize roots of two green algae species, Chlamydomonas reinhardtii and Chlorella sorokiniana, being respectively the model organism for Chlorophyta and one of the most promising species for microalgae cultivation at industrial scale. The results obtained demonstrate that both C. reinhardtii and C. sorokiniana cells promoted the development of maize root system compared to the untreated negative control. C. sorokiniana specifically increased the number of secondary roots, while improved micro-nutrients accumulation on roots and shoots was measured in the case of C. reinhardtii treated plants. When these microalgae-derived biostimulants were applied on plants grown in stress conditions as nitrogen deficiency, improved development of the root system was measured in the case of plants treated with C. sorokiniana biomass. Microalgae cultivation for biostimulant production can thus be considered as a bio-based process providing solutions for improving plant resilience toward stress conditions.

15.
Front Plant Sci ; 12: 600623, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33633760

RESUMO

Protein hydrolysates (PHs) are a class of plant biostimulants used in the agricultural practice to improve crop performance. In this study, we have assessed the capacity of a commercial PH derived from bovine collagen to mitigate drought, hypoxic, and Fe deficiency stress in Zea mays. As for the drought and hypoxic stresses, hydroponically grown plants treated with the PH exhibited an increased growth and absorption area of the roots compared with those treated with inorganic nitrogen. In the case of Fe deficiency, plants supplied with the PH mixed with FeCl3 showed a faster recovery from deficiency compared to plants supplied with FeCl3 alone or with FeEDTA, resulting in higher SPAD values, a greater concentration of Fe in the leaves and modulation in the expression of genes related to Fe. Moreover, through the analysis of circular dichroism spectra, we assessed that the PH interacts with Fe in a dose-dependent manner. Various hypothesis about the mechanisms of action of the collagen-based PH as stress protectant particularly in Fe-deficiency, are discussed.

16.
Front Plant Sci ; 11: 586470, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101351

RESUMO

Phosphorous and iron are a macro- and micronutrient, respectively, whose low bioavailability can negatively affect crop productivity. There is ample evidence that the use of conventional P and Fe fertilizers has several environmental and economical disadvantages, but even though great expectations surround nanotechnology and its applications in the field of plant nutrition, little is known about the mechanisms underlying the uptake and use of these sub-micron particles (nanoparticles, NPs) by crop species. This work shows that cucumber and maize plants both use the nutrients borne by FePO4 NPs more efficiently than those supplied as bulk. However, morpho-physiological parameters and nutrient content analyses reveal that while cucumber plants (a Strategy I species with regard to Fe acquisition) mainly use these NPs as a source of P, maize (a Strategy II species) uses them preferentially for Fe. TEM analyses of cucumber root specimens revealed no cell internalization of the NPs. On the other hand, electron-dense nanometric structures were evident in proximity of the root epidermal cell walls of the NP-treated plants, which after ESEM/EDAX analyses can be reasonably identified as iron-oxyhydroxide. It appears that the nutritional interaction between roots and NPs is strongly influenced by species-specific metabolic responses.

17.
Sci Rep ; 10(1): 18839, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139754

RESUMO

In several cultivation areas, grapevine can suffer from Fe chlorosis due to the calcareous and alkaline nature of soils. This plant species has been described to cope with Fe deficiency by activating Strategy I mechanisms, hence increasing root H+ extrusion and ferric-chelate reductase activity. The degree of tolerance exhibited by the rootstocks has been reported to depend on both reactions, but to date, little emphasis has been given to the role played by root exudate extrusion. We studied the behaviour of two hydroponically-grown, tolerant grapevine rootstocks (Ramsey and 140R) in response to Fe deficiency. Under these experimental conditions, the two varieties displayed differences in their ability to modulate morpho-physiological parameters, root acidification and ferric chelate reductase activity. The metabolic profiling of root exudates revealed common strategies for Fe acquisition, including ones targeted at reducing microbial competition for this micronutrient by limiting the exudation of amino acids and sugars and increasing instead that of Fe(III)-reducing compounds. Other modifications in exudate composition hint that the two rootstocks cope with Fe shortage via specific adjustments of their exudation patterns. Furthermore, the presence of 3-hydroxymugenic acid in these compounds suggests that the responses of grapevine to Fe availability are rather diverse and much more complex than those usually described for Strategy I plants.


Assuntos
Ferro/metabolismo , Micronutrientes/metabolismo , Fenômenos Fisiológicos da Nutrição/fisiologia , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Vitis/metabolismo , Vitis/fisiologia , Ácido Azetidinocarboxílico/análogos & derivados , Quelantes de Ferro/metabolismo , Solo/química
18.
Planta ; 230(1): 85-94, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19350269

RESUMO

The aim of this work was to clarify the role of S supply in the development of the response to Fe depletion in Strategy I plants. In S-sufficient plants, Fe-deficiency caused an increase in the Fe(III)-chelate reductase activity, 59Fe uptake rate and ethylene production at root level. This response was associated with increased expression of LeFRO1 [Fe(III)-chelate reductase] and LeIRT1 (Fe2+ transporter) genes. Instead, when S-deficient plants were transferred to a Fe-free solution, no induction of Fe(III)-chelate reductase activity and ethylene production was observed. The same held true for LeFRO1 gene expression, while the increase in 59Fe2+ uptake rate and LeIRT1 gene over-expression were limited. Sulphur deficiency caused a decrease in total sulphur and thiol content; a concomitant increase in 35SO4(2-) uptake rate was observed, this behaviour being particularly evident in Fe-deficient plants. Sulphur deficiency also virtually abolished expression of the nicotianamine synthase gene (LeNAS), independently of the Fe growth conditions. Sulphur deficiency alone also caused a decrease in Fe content in tomato leaves and an increase in root ethylene production; however, these events were not associated with either increased Fe(III)-chelate reductase activity, higher rates of 59Fe uptake or over-expression of either LeFRO1 or LeIRT1 genes. Results show that S deficiency could limit the capacity of tomato plants to cope with Fe-shortage by preventing the induction of the Fe(III)-chelate reductase and limiting the activity and expression of the Fe2+ transporter. Furthermore, the results support the idea that ethylene alone cannot trigger specific Fe-deficiency physiological responses in a Strategy I plant, such as tomato.


Assuntos
Ferro/metabolismo , Solanum lycopersicum/metabolismo , Enxofre/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions/genética , Etilenos/metabolismo , FMN Redutase/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Transporte de Íons , Radioisótopos de Ferro/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Magnésio/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Potássio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sódio/metabolismo , Sulfatos/metabolismo , Compostos de Sulfidrila/metabolismo , Radioisótopos de Enxofre/metabolismo
19.
Plant Cell Environ ; 32(5): 465-75, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19183296

RESUMO

White lupin (Lupinus albus L.) is able to grow on soils with sparingly available phosphate (P) by producing specialized structures called cluster roots. To mobilize sparingly soluble P forms in soils, cluster roots release substantial amounts of carboxylates and concomitantly acidify the rhizosphere. The relationship between acidification and carboxylate exudation is still largely unknown. In the present work, we studied the linkage between organic acids (malate and citrate) and proton exudations in cluster roots of P-deficient white lupin. After the illumination started, citrate exudation increased transiently and reached a maximum after 5 h. This effect was accompanied by a strong acidification of the external medium and alkalinization of the cytosol, as evidenced by in vivo nuclear magnetic resonance (NMR) analysis. Fusicoccin, an activator of the plasma membrane (PM) H+-ATPase, stimulated citrate exudation, whereas vanadate, an inhibitor of the H+-ATPase, reduced citrate exudation. The burst of citrate exudation was associated with an increase in expression of the LHA1 PM H+-ATPase gene, an increased amount of H+-ATPase protein, a shift in pH optimum of the enzyme and post-translational modification of an H+-ATPase protein involving binding of activating 14-3-3 protein. Taken together, our results indicate a close link in cluster roots of P-deficient white lupin between the burst of citrate exudation and PM H+-ATPase-catalysed proton efflux.


Assuntos
Ácido Cítrico/metabolismo , Lupinus/metabolismo , Fosfatos/metabolismo , Raízes de Plantas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Combinação de Medicamentos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glicosídeos/farmacologia , Lupinus/efeitos dos fármacos , Lupinus/genética , Malatos/metabolismo , Óleos , Fenóis , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Vanadatos/farmacologia
20.
Front Plant Sci ; 10: 675, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178884

RESUMO

Improvement of plant iron nutrition as a consequence of metal complexation by humic substances (HS) extracted from different sources has been widely reported. The presence of humified fractions of the organic matter in soil sediments and solutions would contribute, depending on the solubility and the molecular size of HS, to build up a reservoir of Fe available for plants which exude metal ligands and to provide Fe-HS complexes directly usable by plant Fe uptake mechanisms. It has also been shown that HS can promote the physiological mechanisms involved in Fe acquisition acting at the transcriptional and post-transcriptional level. Furthermore, the distribution and allocation of Fe within the plant could be modified when plants were supplied with water soluble Fe-HS complexes as compared with other natural or synthetic chelates. These effects are in line with previous observations showing that treatments with HS were able to induce changes in root morphology and modulate plant membrane activities related to nutrient acquisition, pathways of primary and secondary metabolism, hormonal and reactive oxygen balance. The multifaceted action of HS indicates that soluble Fe-HS complexes, either naturally present in the soil or exogenously supplied to the plants, can promote Fe acquisition in a complex way by providing a readily available iron form in the rhizosphere and by directly affecting plant physiology. Furthermore, the possibility to use Fe-HS of different sources, size and solubility may be considered as an environmental-friendly tool for Fe fertilization of crops.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA