RESUMO
A series of 4- and 10-benzoyl-1-azapyrenes were prepared by a combination of Pd-catalyzed cross-coupling reactions and Brønsted-acid-mediated alkyne-carbonyl-metathesis (ACM). The photophysical and electrochemical properties of the products were studied and compared to theoretical results.
RESUMO
The incorporation of heteroatoms within polycyclic aromatic compounds has gained significant interest due to its potential to effectively alter the inherent physicochemical properties of compounds without the need for profound structural changes. We herein report the development of a modular synthesis of hitherto unknown thienonaphtho[bc]pyridines and thienonaphtho[bc]quinolines in very good yields by Brønsted acid mediated cycloisomerization, permitting selective access to two isomeric products that are isoelectronic to the parent dibenzopyrene. The photophysical and electrochemical properties of the desired compounds were extensively studied and further complemented by DFT calculations.
RESUMO
A new and convenient synthesis of aryl-substituted naphtho[2,1-a]azulenes by the combination of Suzuki-Miyaura, Sonogashira, and cycloisomerization reactions is reported. The methodology was applied to the synthesis of hitherto unknown azuleno[1,2-h]quinolines, cyclohepta[1,2]indeno[4,5-b]thiophenes, and cyclohepta[1,2]indeno[4,5-c]thiophenes. The impact of different fused-heterocyclic rings on the photophysical and electrochemical properties of these azulene derivatives was studied by experimental and theoretical methods and hence provides a rationale for the preparation of novel azulene derivatives with improved properties for application as organic materials.
RESUMO
A straightforward method for the synthesis of a series of hitherto unknown 1-azapyrenes is reported, which relies on a combination of Pd-catalyzed cross-coupling reactions with Brønsted acid-mediated cycloisomerization reactions. The methodology is highly modular and allows an efficient synthesis of various substituted products in high yields. The structural, electrochemical, and photophysical properties of 1-azapyrenes have been studied by ultraviolet-visible (UV-vis) and fluorescence spectroscopies, cyclic voltammetry, and density functional theory (DFT) calculations.