Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Kidney Int ; 106(1): 67-84, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38428734

RESUMO

Parietal epithelial cells (PECs) are kidney progenitor cells with similarities to a bone marrow stem cell niche. In focal segmental glomerulosclerosis (FSGS) PECs become activated and contribute to extracellular matrix deposition. Colony stimulating factor-1 (CSF-1), a hematopoietic growth factor, acts via its specific receptor, CSF-1R, and has been implicated in several glomerular diseases, although its role on PEC activation is unknown. Here, we found that CSF-1R was upregulated in PECs and podocytes in biopsies from patients with FSGS. Through in vitro studies, PECs were found to constitutively express CSF-1R. Incubation with CSF-1 induced CSF-1R upregulation and significant transcriptional regulation of genes involved in pathways associated with PEC activation. Specifically, CSF-1/CSF-1R activated the ERK1/2 signaling pathway and upregulated CD44 in PECs, while both ERK and CSF-1R inhibitors reduced CD44 expression. Functional studies showed that CSF-1 induced PEC proliferation and migration, while reducing the differentiation of PECs into podocytes. These results were validated in the Adriamycin-induced FSGS experimental mouse model. Importantly, treatment with either the CSF-1R-specific inhibitor GW2580 or Ki20227 provided a robust therapeutic effect. Thus, we provide evidence of the role of the CSF-1/CSF-1R pathway in PEC activation in FSGS, paving the way for future clinical studies investigating the therapeutic effect of CSF-1R inhibitors on patients with FSGS.


Assuntos
Glomerulosclerose Segmentar e Focal , Receptores de Hialuronatos , Fator Estimulador de Colônias de Macrófagos , Podócitos , Glomerulosclerose Segmentar e Focal/patologia , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/genética , Animais , Humanos , Podócitos/metabolismo , Podócitos/patologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/genética , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética , Camundongos , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/efeitos dos fármacos , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Glomérulos Renais/patologia , Glomérulos Renais/metabolismo , Masculino , Modelos Animais de Doenças , Células Cultivadas , Feminino , Regulação para Cima , Movimento Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transdução de Sinais , Camundongos Endogâmicos C57BL , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos
2.
Food Microbiol ; 112: 104216, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36906316

RESUMO

Way-a-linah, an alcoholic beverage produced from the fermented sap of Eucalyptus gunnii, and tuba, a fermented drink made from the syrup of Cocos nucifera fructifying bud, are two of several fermented beverages produced by Australian Aboriginal and Torres Strait people. Here we describe the characterisation of yeast isolates from samples associated with the fermentation of way-a-linah and tuba. Microbial isolates were obtained from two different geographical locations in Australia - the Central Plateau in Tasmania, and Erub Island in the Torres Strait. While Hanseniaspora species and Lachancea cidri were the most abundant species in Tasmania, Candida species were the most abundant in Erub Island. Isolates were screened for tolerance to stress conditions found during the production of fermented beverages and for enzyme activities relevant to the appearance, aroma and flavour of these beverages. Based on screening results, eight isolates were evaluated for their volatile profile during the fermentation of wort, apple juice and grape juice. Diverse volatile profiles were observed for beers, ciders and wines fermented with different isolates. These findings reveal the potential of these isolates to produce fermented beverages with unique aroma and flavour profiles and highlight the vast microbial diversity associated with fermented beverages produced by Australia's Indigenous peoples.


Assuntos
Vinho , Leveduras , Humanos , Austrália , Bebidas Alcoólicas , Bebidas , Fermentação , Povos Indígenas
3.
Environ Microbiol ; 24(12): 5615-5629, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35769023

RESUMO

Most organisms belonging to the Saccharomycotina subphylum have high genetic diversity and a vast repertoire of metabolisms and lifestyles. Lachancea cidri is an ideal yeast model for exploring the interplay between genetics, ecological function and evolution. Lachancea cidri diverged from the Saccharomyces lineage before the whole-genome duplication and is distributed across the South Hemisphere, displaying an important ecological success. We applied phylogenomics to investigate the genetic variation of L. cidri isolates obtained from Australia and South America. Our approach revealed the presence of two main lineages according to their geographic distribution (Aus and SoAm). Estimation of the divergence time suggests that SoAm and Aus lineages diverged near the last glacial maximum event during the Pleistocene (64-8 KYA). Interestingly, we found that the French reference strain is closely related to the Australian strains, with a recent divergence (405-51 YA), likely associated to human movements. Additionally, we identified different lineages within the South American population, revealing that Patagonia contains a similar genetic diversity comparable to that of other lineages in S. cerevisiae. These findings support the idea of a Pleistocene-dated divergence between South Hemisphere lineages, where the Nothofagus and Araucaria ecological niches likely favoured the extensive distribution of L. cidri in Patagonia.


Assuntos
Variação Genética , Saccharomyces cerevisiae , Humanos , Haplótipos , Austrália , Filogenia
4.
FEMS Yeast Res ; 22(1)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35561744

RESUMO

Brettanomyces species, and particularly B. bruxellensis as the most studied representative, are strongly linked to industrial fermentation processes. This association is considered either positive or undesirable depending on the industry. While in some brewing applications and in kombucha production Brettanomyces yeasts contribute to the flavour and aroma profile of these beverages, in winemaking and bioethanol production Brettanomyces is considered a spoilage or contaminant microorganism. Nevertheless, understanding Brettanomyces biology and metabolism in detail will benefit all industries. This review discusses recent molecular biology tools including genomics, transcriptomics, and genetic engineering techniques that can improve our understanding of Brettanomyces physiology and how these approaches can be used to make the industrial potential of this species a reality.


Assuntos
Brettanomyces , Vinho , Brettanomyces/genética , Brettanomyces/metabolismo , Fermentação , Microbiologia de Alimentos , Vinho/análise
5.
FEMS Yeast Res ; 21(5)2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34089329

RESUMO

Brettanomyces bruxellensis is considered one of the most problematic microbes associated with wine production. Sulfur dioxide is commonly used to inhibit the growth of B. bruxellensis and limit the potential wine spoilage. Brettanomyces bruxellensis wine isolates can grow at higher concentrations of this preservative than isolates from other sources. Thus, it has been suggested that the use of sulfite may have selected for B. bruxellensis strains better adapted to survive in the winemaking environment. We utilized laboratory adaptive evolution to determine the potential for this to occur. Three B. bruxellensis strains, representative of known genetic variation within the species, were subjected to increasing sublethal sulfur dioxide concentrations. Individual clones isolated from evolved populations displayed enhanced sulfite tolerance, ranging from 1.6 to 2.5 times higher than the corresponding parental strains. Whole-genome sequencing of sulfite-tolerant clones derived from two of the parental strains revealed structural variations affecting 270 genes. The region containing the sulfite efflux pump encoding gene, SSU1, showed clear copy number variants in all sequenced clones. Regardless of parental strain genetic background, SSU1 copy number changes were reproducibly associated with one SSU1 haplotype. This work clearly demonstrates adaptive evolution of B. bruxellensis when exposed to sublethal sulfites and suggests that, similar to Saccharomyces cerevisiae wine yeast, the mechanism responsible involves the gene SSU1.


Assuntos
Brettanomyces , Vinho , Brettanomyces/genética , Microbiologia de Alimentos , Saccharomyces cerevisiae , Sulfitos , Dióxido de Enxofre , Vinho/análise
6.
Radiographics ; 41(4): 1123-1143, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34048278

RESUMO

The genitourinary region is one of the most common sites of extrapulmonary tuberculosis (TB) involvement. The imaging features of genitourinary TB are protean and can mimic other entities, including malignancy, and pose a diagnostic dilemma. Hematogenous seeding and lymphatic spread of mycobacteria from pulmonary, tonsillar, and nodal TB are implicated in the pathogenesis of genitourinary TB. In addition, contiguous extension from the urinary tract and sexual transmission are described as sources of genital TB. Genitourinary TB can be indolent and results in nonspecific signs and symptoms; thus, imaging has a vital role in the working diagnosis for these cases. Classic uroradiologic signs of genitourinary TB are primarily described from the era of intravenous urography and conventional radiography. Now, CT, CT urography, MRI, and US are used in the diagnosis and management. Familiarity with the imaging features of genitourinary TB may help guide the diagnosis and, in turn, lead to timely management. US has a vital role in the evaluation of scrotal and female genital TB. MRI offers superior soft-tissue contrast resolution and excellent depiction of anatomic detail. The various imaging manifestations of genitourinary TB are highlighted. ©RSNA, 2021.


Assuntos
Tuberculose Urogenital , Tuberculose , Feminino , Humanos , Imageamento por Ressonância Magnética , Radiografia , Tuberculose/diagnóstico por imagem , Tuberculose Urogenital/diagnóstico por imagem , Urografia
7.
J Comput Assist Tomogr ; 45(3): 352-358, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33797437

RESUMO

ABSTRACT: The COVID-19 pandemic presents an ongoing global health threat. The SARS-CoV-2 is known to cause substantial pulmonary disease, and most of the current radiological publications are dedicated to describing and characterizing these findings. However, studies regarding imaging findings in the abdomen and pelvis of infected patients are still very limited. The aim of this review is to discuss the most frequent abdominal manifestations based on the current literature and representative images from our local experience.


Assuntos
Abdome/diagnóstico por imagem , COVID-19/complicações , Pelve/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Abdome/virologia , COVID-19/diagnóstico por imagem , Feminino , Humanos , Masculino , Tomografia Computadorizada Multidetectores/métodos , Pelve/virologia
8.
J Comput Assist Tomogr ; 45(3): 485-489, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33797444

RESUMO

PURPOSE: The aim of this study was to study interreader agreement of the RSNA-STR-ACR (Radiological Society of North America/Society of Thoracic Radiology/American College of Radiology) consensus statement on reporting chest computed tomography (CT) findings related to COVID-19 on a sample of consecutive patients confirmed with reverse transcriptase-polymerase chain reaction (RT-PCR) for severe acute respiratory syndrome coronavirus 2. MATERIALS AND METHODS: This institutional review board-approved retrospective study included 240 cases with a mean age of 47.6 ± 15.9 years, ranging from 20 to 90 years, who had a chest CT and RT-PCR performed. Computed tomography images were independently analyzed by 2 thoracic radiologists to identify patterns defined by the RSNA-STR-ACR consensus statement, and concordance was determined with weighted κ tests. Also, CT findings and CT severity scores were tabulated and compared. RESULTS: Of the 240 cases, 118 had findings on CT. The most frequent on the RT-PCR-positive group were areas of ground-glass opacities (80.5%), crazy-paving pattern (32.2%), and rounded pseudonodular ground-glass opacities (22.9%). Regarding the CT patterns, the most frequent in the RT-PCR-positive group was typical in 75.9%, followed by negative in 17.1%. The interreader agreement was 0.90 (95% confidence interval, 0.80-0.96) in this group. The CT severity score had a mean difference of -0.07 (95% confidence interval, -0.48 to 0.34) among the readers, showing no significant differences regarding visual estimation. CONCLUSIONS: The RSNA-STR-ACR consensus statement on reporting chest CT patterns for COVID-19 presents a high interreader agreement, with the typical pattern being more frequently associated with RT-PCR-positive examinations.


Assuntos
COVID-19/diagnóstico , Interpretação de Imagem Radiográfica Assistida por Computador/normas , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Tomografia Computadorizada por Raios X/normas , Adulto , Idoso , Idoso de 80 Anos ou mais , Consenso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Estudos Retrospectivos , Índice de Gravidade de Doença , Adulto Jovem
9.
Appl Microbiol Biotechnol ; 104(16): 7105-7115, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32592028

RESUMO

The ability to genetically manipulate microorganisms has been essential for understanding their biology and metabolism. Targeted genome editing relies on highly efficient homologous recombination, and while this is readily observed in the yeast Saccharomyces cerevisiae, most non-conventional yeast species do not display this trait and remain recalcitrant to targeted editing methods. CRISPR-based editing can bypass the requirement for high levels of native homologous recombination, enabling targeted modification to be more broadly implemented. While genetic transformation has been reported previously in Brettanomyces bruxellensis, a yeast with broad biotechnological potential and responsible for significant economic losses during the production of fermented beverages, targeted editing approaches have not been reported. Here, we describe the use of an expression-free CRISPR-Cas9 system, in combination with gene transformation cassettes tailored for B. bruxellensis, to provide the means for targeted gene deletion in this species. Deletion efficiency was shown to be dependent on homologous flanking DNA length, with higher targeting efficiencies observed with cassettes containing longer flanking regions. In a diploid strain, it was not possible to delete multiple alleles in one step, with heterozygous deletants only obtained when using DNA cassettes with long flanking regions. However, stepwise transformations (using two different marker genes) were successfully used to delete both wild-type alleles. Thus, the approach reported here will be crucial to understand the complex physiology of B. bruxellensis. Key points • The use of CRISPR-Cas9 enables targeted gene deletion in Brettanomyces bruxellensis. • Homozygous diploid deletions are possible with step-wise transformations. • Deletion of SSU1 confirmed the role of this gene in sulphite tolerance.


Assuntos
Biotecnologia/métodos , Brettanomyces/genética , Sistemas CRISPR-Cas , Deleção de Genes , Genoma Fúngico , Alelos , Brettanomyces/efeitos dos fármacos , Brettanomyces/metabolismo , Sulfitos/farmacologia , Transformação Genética
10.
FEMS Yeast Res ; 19(3)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30721945

RESUMO

Recent studies have suggested a strong niche adaptation for Brettanomyces bruxellensis strains according to human-related fermentation environments, including beer, wine and bioethanol. This is further supported by a correlation between B. bruxellensis genetic grouping and tolerance to SO2, the main antimicrobial used in wine. The allotriploid AWRI1499-like cluster, in particular, shows high SO2 tolerance suggesting that the genetic configuration observed for these strains may confer a selective advantage in winemaking conditions. To test this hypothesis, we evaluated the relative selective advantage of representatives of the three main B. bruxellensis genetic groups in presence of SO2. As a proof-of-concept and using recently developed transformation cassettes, we compared strains under different SO2 concentrations using pairwise competitive fitness experiments. Our results showed that AWRI1499 is specifically adapted to environments with high SO2 concentrations compared to other B. bruxellensis wine strains, indicating a potential correlation between allotriploidisation origin and environmental adaptation in this species. Additionally, our findings suggest different types of competition between strains, such as coexistence and exclusion, revealing new insights on B. bruxellensis interactions at intraspecies level.


Assuntos
Adaptação Fisiológica , Brettanomyces/efeitos dos fármacos , Brettanomyces/genética , Interações Microbianas , Dióxido de Enxofre/farmacologia , Vinho/microbiologia , Brettanomyces/metabolismo , Fermentação , Aptidão Genética
11.
Food Microbiol ; 84: 103247, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31421773

RESUMO

Over the last decades there has been an increase in ethanol concentration in wine. High ethanol concentration may impact negatively wine flavor and can be associated with harmful effects on human health. In this study, we investigated a microbiological approach to reduce wine ethanol concentration, using three non-Saccharomyces yeast strains (Metschnikowia pulcherrima, Torulaspora delbrueckii and Zygosaccharomyces bailii) in sequential fermentations with S. cerevisiae under different aeration conditions. At the same time, we evaluated the volatile profile of the resulting reduced alcohol Chardonnay wines. Results showed that the non-Saccharomyces yeasts tested were able to reduce wine ethanol concentration when oxygen was provided. Compared to S. cerevisiae wines, ethanol reduction was 1.6% v/v, 0.9% v/v and 1.0% v/v for M. pulcherrima, T. delbrueckii and Z. bailii sequential fermentations, respectively. Under the conditions evaluated here, aeration did not affect acetic acid production for any of the non-Saccharomyces strains tested. Although aeration affected wine volatile profiles, this was depended on yeast strain. Thus, wines produced with M. pulcherrima under aeration of 0.05 volume of air per volume of culture per minute (VVM) showed excessive ethyl acetate content, while Z. bailli wines produced with 0.05 VVM aeration had increased concentrations of higher alcohols and volatile acids. Increased concentrations of these compounds over their sensory thresholds, are likely to impact negatively on wine sensory profile. Contrarily, all three non-Saccharomyces strains under 0.025 VVM aeration conditions produced wines with reduced ethanol concentration and acceptable chemical volatile profiles.


Assuntos
Fermentação , Oxigênio/metabolismo , Vinho/análise , Leveduras/metabolismo , Etanol/análise
12.
Rev Med Chil ; 147(12): 1579-1593, 2019 Dec.
Artigo em Espanhol | MEDLINE | ID: mdl-32186623

RESUMO

Acute aortic syndromes include a spectrum of life-threatening aortic conditions. A review of the diagnostic aspects of the acute aortic syndrome was made, from the perspective of the imaging techniques available for this purpose. The advantages and disadvantages of each technique and its diagnostic performance were evaluated. Emphasis was placed on the relevance of clinical information as a fundamental tool for suspecting this syndrome and appropriately choosing the imaging technique. Our main objective is to provide information about the diagnosis of this condition, especially in the context of emergency services.


Assuntos
Doenças da Aorta/diagnóstico por imagem , Doença Aguda , Doenças da Aorta/classificação , Serviços Médicos de Emergência , Humanos , Fatores de Risco , Síndrome
13.
Metab Eng ; 49: 178-191, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30138679

RESUMO

Metabolic engineering has been vital to the development of industrial microbes such as the yeast Saccharomyces cerevisiae. However, sequential rounds of modification are often needed to achieve particular industrial design targets. Systems biology approaches can aid in identifying genetic targets for modification through providing an integrated view of cellular physiology. Recently, research into the generation of commercial yeasts that can produce reduced-ethanol wines has resulted in metabolically-engineered strains of S. cerevisiae that are less efficient at producing ethanol from sugar. However, these modifications led to the concomitant production of off-flavour by-products. A combination of transcriptomics, proteomics and metabolomics was therefore used to investigate the physiological changes occurring in an engineered low-ethanol yeast strain during alcoholic fermentation. Integration of 'omics data identified several metabolic reactions, including those related to the pyruvate node and redox homeostasis, as being significantly affected by the low-ethanol engineering methodology, and highlighted acetaldehyde and 2,4,5-trimethyl-1,3-dioxolane as the main off-flavour compounds. Gene remediation strategies were then successfully applied to decrease the formation of these by-products, while maintaining the 'low-alcohol' phenotype. The data generated from this comprehensive systems-based study will inform wine yeast strain development programmes, which, in turn, could potentially play an important role in assisting winemakers in their endeavour to produce low-alcohol wines with desirable flavour profiles.


Assuntos
Aromatizantes/metabolismo , Genes Fúngicos , Genômica , Engenharia Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
14.
FEMS Yeast Res ; 18(7)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982550

RESUMO

Brettanomyces bruxellensis is usually considered a spoilage microorganism, responsible for significant economic losses during the production of fermented beverages such as wine, beer and cider, though for some styles of beer its influence is essential. In recent years, the competitiveness of this yeast in bioethanol production processes has brought to attention its broader biotechnological potential. Furthermore, the species has evolved key fermentation traits in parallel with Saccharomyces cerevisiae. Attempts to better understand B. bruxellensis physiology through genomics-driven research have been hampered by a lack of functional genomics tools. Genetic transformation for B. bruxellensis has only been developed recently and with limited efficiency. Here we describe gene transformation cassettes tailored for B. bruxellensis, which provide multiple drug-resistant markers and the ability to tag B. bruxellensis with different fluorescent proteins. All marker cassettes resulted in increased transformation efficiency compared to the maximum reported in literature, with one cassette, TDH1p natMX, showing five times greater efficiency. Transformation cassettes encoding fluorescent proteins enabled discrimination between subpopulations of transformed B. bruxellensis cells by flow cytometry and fluorescent microscopy. Thus, the genetic transformation toolkit described here unlocks several molecular applications such as strain tagging, insertional mutagenesis and potentially targeted gene deletion.


Assuntos
Biotecnologia/métodos , Brettanomyces/genética , Transformação Genética , Bebidas Alcoólicas/microbiologia , Biotecnologia/instrumentação , Farmacorresistência Fúngica/genética , Marcadores Genéticos , Proteínas Luminescentes/genética , Plasmídeos/genética , Regiões Promotoras Genéticas/genética
15.
Yeast ; 34(3): 111-128, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27813152

RESUMO

Wine is a complex beverage, comprising thousands of metabolites that are produced through the action of a plethora of yeasts and bacteria during fermentation of grape must. These microbial communities originate in the vineyard and the winery and reflect the influence of several factors including grape variety, geographical location, climate, vineyard spraying, technological practices, processing stage and season (pre-harvest, harvest, post-harvest). Vineyard and winery microbial communities have the potential to participate during fermentation and influence wine flavour and aroma. Therefore, there is an enormous interest in isolating and characterising these communities, particularly non-Saccharomyces yeast species to increase wine flavour diversity, while also exploting regional signature microbial populations to enhance regionality. In this review we describe the role and relevance of the main non-Saccharomyces yeast species found in vineyards and wineries. This includes the latest reports covering the application of these species for winemaking; and the biotechnological characteristics and potential applications of non-Saccharomyces species in other areas. In particular, we focus attention on the species for which molecular and genomic tools and resources are available for study. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Fazendas , Vitis/microbiologia , Vinho/microbiologia , Leveduras/metabolismo , Brettanomyces/metabolismo , Fermentação , Hanseniaspora/metabolismo , Metschnikowia/metabolismo , Pichia/metabolismo , Rhodotorula/metabolismo , Torulaspora/metabolismo , Zygosaccharomyces/metabolismo
17.
Mol Microbiol ; 98(1): 7-16, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26135034

RESUMO

Mycolic acids are unique long chain fatty acids found in the lipid-rich cell walls of mycobacteria including the tubercle bacillus Mycobacterium tuberculosis. Essential for viability and virulence, enzymes involved in the biosynthesis of mycolic acids represent novel targets for drug development. This is particularly relevant to the impact on global health given the rise of multidrug resistant and extensively drug resistant strains of M. tuberculosis. In this review, we discuss recent advances in our understanding of how mycolic acid are synthesised, especially the potential role of specialised fatty acid synthase complexes. Also, we examine the role of a recently reported mycolic acid transporter MmpL3 with reference to several reports of the targeting of this transporter by diverse compounds with anti-M. tuberculosis activity. Additionally, we consider recent findings that place mycolic acid biosynthesis in the context of the cell biology of the bacterium, viz its localisation and co-ordination with the bacterial cytoskeleton, and its role beyond maintaining cell envelope integrity.


Assuntos
Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/metabolismo , Antituberculosos/farmacologia , Proteínas de Bactérias/metabolismo , Descoberta de Drogas , Ácido Graxo Sintases/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/patogenicidade , Ácidos Micólicos/química , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Virulência
18.
Appl Microbiol Biotechnol ; 100(23): 9861-9874, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27787587

RESUMO

The conversion of fermentable sugars into alcohol during fermentation is the key process in the production of all alcoholic beverages. However, microbial activity during fermentation is considerably more complex than merely producing ethanol, usually involving the action of a great diversity of yeasts and bacteria and the production of metabolites that affect the organoleptic properties of fermented beverages. Non-Saccharomyces yeasts, which are naturally present in un-inoculated, spontaneous fermentations, can provide a means for increasing aroma and flavour diversity in fermented beverages. This review will cover the impacts of non-Saccharomyces yeasts on volatile composition and sensory profile of beer, wine, spirits and other fermented beverages, and look at future opportunities involving yeast interactions and regionality in alcoholic beverages.


Assuntos
Bebidas Alcoólicas , Microbiologia de Alimentos , Compostos Orgânicos Voláteis/metabolismo , Leveduras/metabolismo , Aromatizantes/metabolismo
19.
FEMS Yeast Res ; 14(2): 215-37, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24164726

RESUMO

Saccharomyces cerevisiae and grape juice are 'natural companions' and make a happy wine marriage. However, this relationship can be enriched by allowing 'wild' non-Saccharomyces yeast to participate in a sequential manner in the early phases of grape must fermentation. However, such a triangular relationship is complex and can only be taken to 'the next level' if there are no spoilage yeast present and if the 'wine yeast' - S. cerevisiae - is able to exert its dominance in time to successfully complete the alcoholic fermentation. Winemakers apply various 'matchmaking' strategies (e.g. cellar hygiene, pH, SO2 , temperature and nutrient management) to keep 'spoilers' (e.g. Dekkera bruxellensis) at bay, and allow 'compatible' wild yeast (e.g. Torulaspora delbrueckii, Pichia kluyveri, Lachancea thermotolerans and Candida/Metschnikowia pulcherrima) to harmonize with potent S. cerevisiae wine yeast and bring the best out in wine. Mismatching can lead to a 'two is company, three is a crowd' scenario. More than 40 of the 1500 known yeast species have been isolated from grape must. In this article, we review the specific flavour-active characteristics of those non-Saccharomyces species that might play a positive role in both spontaneous and inoculated wine ferments. We seek to present 'single-species' and 'multi-species' ferments in a new light and a new context, and we raise important questions about the direction of mixed-fermentation research to address market trends regarding so-called 'natural' wines. This review also highlights that, despite the fact that most frontier research and technological developments are often focussed primarily on S. cerevisiae, non-Saccharomyces research can benefit from the techniques and knowledge developed by research on the former.


Assuntos
Fermentação , Vinho , Leveduras/classificação , Bactérias/metabolismo , Genômica , Pesquisa , Saccharomyces/classificação , Saccharomyces/metabolismo , Leveduras/fisiologia
20.
Rev Med Chil ; 142(12): 1565-74, 2014 Dec.
Artigo em Espanhol | MEDLINE | ID: mdl-25693439

RESUMO

Nephrogenic systemic fibrosis (NSF) is a severe iatrogenic disease that affect patients with impaired renal function exposed to gadolinium-based contrast agents. Clinically, symptoms develop within days or weeks after the exposure and mimic a scleromyxedema. The causal relationship between use of gadolinium-based contrast agents and NSF led to develop clinical guidelines aiming to limit the use of this contrast medium in high risk patients. These guidelines decreased the incidence of NSF in the last years. Unfortunately there is no specific treatment for NSF yet. Thus, strict adherence to current guidelines is key to prevent new cases. Renal dysfunction is increasingly common in our population. Therefore, practicing physicians should be aware of this potential complication of the use of gadolinium based contrast media.


Assuntos
Meios de Contraste/efeitos adversos , Gadolínio/efeitos adversos , Dermopatia Fibrosante Nefrogênica/induzido quimicamente , Humanos , Dermopatia Fibrosante Nefrogênica/diagnóstico , Dermopatia Fibrosante Nefrogênica/prevenção & controle , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA