Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 23(19): 5410-4, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23953189

RESUMO

The optimization for selectivity and central receptor occupancy for a series of spirocyclic azetidine-piperidine inverse agonists of the ghrelin receptor is described. Decreased mAChR muscarinic M2 binding was achieved by use of a chiral indane in place of a substituted benzylic group. Compounds with desirable balance of human in vitro clearance and ex vivo central receptor occupancy were discovered by incorporation of heterocycles. Specifically, heteroaryl rings with nitrogen(s) vicinal to the indane linkage provided the most attractive overall properties.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Receptores de Grelina/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Sítios de Ligação , Agonismo Inverso de Drogas , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Humanos , Indanos/química , Indanos/farmacologia , Concentração Inibidora 50 , Isomerismo , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Ratos , Relação Estrutura-Atividade
2.
Bioorg Med Chem Lett ; 22(13): 4281-7, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22677316

RESUMO

The discovery of spirocyclic piperidine-azetidine inverse agonists of the ghrelin receptor is described. The characterization and redressing of the issues associated with these compounds is detailed. An efficient three-step synthesis and a binding assay were relied upon as the primary means of rapidly improving potency and ADMET properties for this class of inverse agonist compounds. Compound 10 n bearing distributed polarity in the form of an imidazo-thiazole acetamide and a phenyl triazole is a unit lower in logP and has significantly improved binding affinity compared to the hit molecule 10a, providing support for further optimization of this series of compounds.


Assuntos
Azetidinas/química , Piperidinas/química , Receptores de Grelina/agonistas , Animais , Azetidinas/síntese química , Azetidinas/farmacocinética , Agonismo Inverso de Drogas , Humanos , Microssomos Hepáticos/metabolismo , Ratos , Receptores de Grelina/metabolismo , Relação Estrutura-Atividade
3.
Int J Alzheimers Dis ; 2014: 431858, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25097793

RESUMO

Alzheimer's disease is the most prevalent cause of dementia and is associated with accumulation of amyloid-ß peptide (Aß), particularly the 42-amino acid Aß1-42, in the brain. Aß1-42 levels can be decreased by γ-secretase modulators (GSM), which are small molecules that modulate γ-secretase, an enzyme essential for Aß production. BMS-869780 is a potent GSM that decreased Aß1-42 and Aß1-40 and increased Aß1-37 and Aß1-38, without inhibiting overall levels of Aß peptides or other APP processing intermediates. BMS-869780 also did not inhibit Notch processing by γ-secretase and lowered brain Aß1-42 without evidence of Notch-related side effects in rats. Human pharmacokinetic (PK) parameters were predicted through allometric scaling of PK in rat, dog, and monkey and were combined with the rat pharmacodynamic (PD) parameters to predict the relationship between BMS-869780 dose, exposure and Aß1-42 levels in human. Off-target and safety margins were then based on comparisons to the predicted exposure required for robust Aß1-42 lowering. Because of insufficient safety predictions and the relatively high predicted human daily dose of 700 mg, further evaluation of BMS-869780 as a potential clinical candidate was discontinued. Nevertheless, BMS-869780 demonstrates the potential of the GSM approach for robust lowering of brain Aß1-42 without Notch-related side effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA