Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 20(3): e3001560, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35298460

RESUMO

Hemispheric lateralization constitutes a core architectural principle of human brain organization underlying cognition, often argued to represent a stable, trait-like feature. However, emerging evidence underlines the inherently dynamic nature of brain networks, in which time-resolved alterations in functional lateralization remain uncharted. Integrating dynamic network approaches with the concept of hemispheric laterality, we map the spatiotemporal architecture of whole-brain lateralization in a large sample of high-quality resting-state fMRI data (N = 991, Human Connectome Project). We reveal distinct laterality dynamics across lower-order sensorimotor systems and higher-order associative networks. Specifically, we expose 2 aspects of the laterality dynamics: laterality fluctuations (LF), defined as the standard deviation of laterality time series, and laterality reversal (LR), referring to the number of zero crossings in laterality time series. These 2 measures are associated with moderate and extreme changes in laterality over time, respectively. While LF depict positive association with language function and cognitive flexibility, LR shows a negative association with the same cognitive abilities. These opposing interactions indicate a dynamic balance between intra and interhemispheric communication, i.e., segregation and integration of information across hemispheres. Furthermore, in their time-resolved laterality index, the default mode and language networks correlate negatively with visual/sensorimotor and attention networks, which are linked to better cognitive abilities. Finally, the laterality dynamics are associated with functional connectivity changes of higher-order brain networks and correlate with regional metabolism and structural connectivity. Our results provide insights into the adaptive nature of the lateralized brain and new perspectives for future studies of human cognition, genetics, and brain disorders.


Assuntos
Encéfalo , Conectoma , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Cognição , Lateralidade Funcional , Humanos , Imageamento por Ressonância Magnética/métodos
2.
Psychol Med ; 54(4): 639-651, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37997708

RESUMO

Reward processing dysfunctions are considered a candidate mechanism underlying anhedonia and apathy in depression. Neuroimaging studies have documented that neurofunctional alterations in mesocorticolimbic circuits may neurally mediate these dysfunctions. However, common and distinct neurofunctional alterations during motivational and hedonic evaluation of monetary and natural rewards in depression have not been systematically examined. Here, we capitalized on pre-registered neuroimaging meta-analyses to (1) establish general reward-related neural alterations in depression, (2) determine common and distinct alterations during the receipt and anticipation of monetary v. natural rewards, and, (3) characterize the differences on the behavioral, network, and molecular level. The pre-registered meta-analysis (https://osf.io/ay3r9) included 633 depressed patients and 644 healthy controls and revealed generally decreased subgenual anterior cingulate cortex and striatal reactivity toward rewards in depression. Subsequent comparative analyses indicated that monetary rewards led to decreased hedonic reactivity in the right ventral caudate while natural rewards led to decreased reactivity in the bilateral putamen in depressed individuals. These regions exhibited distinguishable profiles on the behavioral, network, and molecular level. Further analyses demonstrated that the right thalamus and left putamen showed decreased activation during the anticipation of monetary reward. The present results indicate that distinguishable neurofunctional alterations may neurally mediate reward-processing alterations in depression, in particular, with respect to monetary and natural rewards. Given that natural rewards prevail in everyday life, our findings suggest that reward-type specific interventions are warranted and challenge the generalizability of experimental tasks employing monetary incentives to capture reward dysregulations in everyday life.


Assuntos
Depressão , Motivação , Humanos , Depressão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Recompensa , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia
3.
Cereb Cortex ; 33(23): 11206-11224, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37823346

RESUMO

Complex cognitive processes, like creative thinking, rely on interactions among multiple neurocognitive processes to generate effective and innovative behaviors on demand, for which the brain's connector hubs play a crucial role. However, the unique contribution of specific hub sets to creative thinking is unknown. Employing three functional magnetic resonance imaging datasets (total N = 1,911), we demonstrate that connector hub sets are organized in a hierarchical manner based on diversity, with "control-default hubs"-which combine regions from the frontoparietal control and default mode networks-positioned at the apex. Specifically, control-default hubs exhibit the most diverse resting-state connectivity profiles and play the most substantial role in facilitating interactions between regions with dissimilar neurocognitive functions, a phenomenon we refer to as "diverse functional interaction". Critically, we found that the involvement of control-default hubs in facilitating diverse functional interaction robustly relates to creativity, explaining both task-induced functional connectivity changes and individual creative performance. Our findings suggest that control-default hubs drive diverse functional interaction in the brain, enabling complex cognition, including creative thinking. We thus uncover a biologically plausible explanation that further elucidates the widely reported contributions of certain frontoparietal control and default mode network regions in creativity studies.


Assuntos
Encéfalo , Criatividade , Encéfalo/diagnóstico por imagem , Cognição , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem
4.
Mol Psychiatry ; 27(2): 967-975, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34650205

RESUMO

OBJECTIVE: To investigate the relation between parental age, and behavioral, cognitive and brain differences in the children. METHOD: Data with children aged 9-11 of 8709 mothers with parental age 15-45 years were analyzed from the Adolescent Brain Cognitive Development (ABCD) study. A general linear model was used to test the associations of the parental age with brain structure, and behavioral and cognitive problems scores. RESULTS: Behavioral and cognitive problems were greater in the children of the younger mothers, and were associated with lower volumes of cortical regions in the children. There was a linear correlation between the behavioral and cognitive problems scores, and the lower brain volumes (r > 0.6), which was evident when parental age was included as a stratification factor. The regions with lower volume included the anterior cingulate cortex, medial and lateral orbitofrontal cortex and amygdala, parahippocampal gyrus and hippocampus, and temporal lobe (FDR corrected p < 0.01). The lower cortical volumes and areas in the children significantly mediated the association between the parental age and the behavioral and cognitive problems in the children (all p < 10-4). The effects were large, such as the 71.4% higher depressive problems score, and 27.5% higher rule-breaking score, in the children of mothers aged 15-19 than the mothers aged 34-35. CONCLUSIONS: Lower parental age is associated with behavioral problems and reduced cognitive performance in the children, and these differences are related to lower volumes and areas of some cortical regions which mediate the effects in the children. The findings are relevant to psychiatric understanding and assessment.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Adolescente , Criança , Cognição , Feminino , Humanos , Mães , Córtex Pré-Frontal
5.
Neuroimage ; 227: 117632, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33316392

RESUMO

Creative thinking is a hallmark of human cognition, which enables us to generate novel and useful ideas. Nevertheless, its emergence within the macro-scale neurocognitive circuitry remains largely unknown. Using resting-state fMRI data from two large population samples (SWU: n = 931; HCP: n = 1001) and a novel "travelling pattern prediction analysis", here we identified the modularized functional connectivity patterns linked to creative thinking ability, which concurrently explained individual variability across ordinary cognitive abilities such as episodic memory, working memory and relational processing. Further interrogation of this neural pattern with graph theoretical tools revealed both hub-like brain structures and globally-efficient information transfer paths that together may facilitate higher creative thinking ability through the convergence of distinct cognitive operations. Collectively, our results provide reliable evidence for the hypothesized emergence of creative thinking from core cognitive components through neural integration, and thus allude to a significant theoretical advancement in the study of creativity.


Assuntos
Encéfalo/diagnóstico por imagem , Cognição/fisiologia , Criatividade , Rede Nervosa/diagnóstico por imagem , Pensamento/fisiologia , Adulto , Encéfalo/fisiologia , Conectoma , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/fisiologia
6.
Neuroimage ; 238: 118269, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34139360

RESUMO

Inhibitory control hierarchically regulates cognitive and emotional systems in the service of adaptive goal-directed behavior across changing task demands and environments. While previous studies convergently determined the contribution of prefrontal-striatal systems to general inhibitory control, findings on the specific circuits that mediate emotional context-specific impact on inhibitory control remained inconclusive. Against this background we combined an evaluated emotional Go/No Go task with fMRI in a large cohort of subjects (N=250) to segregate brain systems and circuits that mediate domain-general from emotion-specific inhibitory control. Particularly during a positive emotional context, behavioral results showed a lower accuracy for No Go trials and a faster response time for Go trials. While the dorsal striatum and lateral frontal regions were involved in inhibitory control irrespective of emotional context, activity in the ventral striatum (VS) and medial orbitofrontal cortex (mOFC) varied as a function of emotional context. On the voxel-wise whole-brain network level, limbic and striatal systems generally exhibited highest changes in global brain connectivity during inhibitory control, while global brain connectivity of the left mOFC was less decreased during emotional contexts. Functional connectivity analyses moreover revealed that negative coupling between the VS with inferior frontal gyrus (IFG)/insula and mOFC varied as a function of emotional context. Together these findings indicate separable domain- general as well as emotional context-specific inhibitory brain systems which specifically encompass the VS and its connections with frontal regions.


Assuntos
Cognição/fisiologia , Emoções/fisiologia , Córtex Pré-Frontal/fisiologia , Estriado Ventral/fisiologia , Feminino , Humanos , Inibição Psicológica , Masculino , Testes Neuropsicológicos , Adulto Jovem
7.
Psychol Med ; 51(2): 329-339, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31769365

RESUMO

BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is a developmental condition that often persists into adulthood with extensive negative consequences on quality of life. Despite emerging evidence indicating the genetic basis of ADHD, investigations into the familial expression of latent neurocognitive traits remain limited. METHODS: In a group of adult ADHD probands (n = 20), their unaffected first-degree relatives (n = 20) and typically developing control participants (n = 20), we assessed endophenotypic alterations in the default mode network (DMN) connectivity during resting-state functional magnetic resonance imaging in relation to cognitive performance and clinical symptoms. In an external validation step, we also examined the dimensional nature of this neurocognitive trait in a sample of unrelated healthy young adults (n = 100) from the Human Connectome Project (HCP). RESULTS: The results illustrated reduced anti-correlations between the posterior cingulate cortex/precuneus and right middle frontal gyrus that was shared between adult ADHD probands and their first-degree relatives, but not with healthy controls. The observed connectivity alterations were linked to higher ADHD symptoms that was mediated by performance in a sustained attention task. Moreover, this brain-based neurocognitive trait dimensionally explained ADHD symptom variability in the HCP sample. CONCLUSIONS: Alterations in the default mode connectivity may represent a dimensional endophenotype of ADHD, hence a significant aspect of the neuropathophysiology of this disorder. As such, brain network organisation can potentially be employed as an important neurocognitive trait to enhance statistical power of genetic studies in ADHD and as a surrogate efficacy endpoint in the development of novel pharmaceuticals.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Encéfalo/fisiopatologia , Rede Nervosa/fisiopatologia , Adolescente , Adulto , Estudos de Casos e Controles , Conectoma , Endofenótipos , Família , Feminino , Lobo Frontal/fisiopatologia , Giro do Cíngulo/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia , Lobo Parietal/fisiopatologia , Qualidade de Vida , Adulto Jovem
8.
Neuroimage ; 219: 117019, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32522664

RESUMO

Recent accounts of large-scale cortical organisation suggest that the default mode network (DMN) is positioned at the top of a principal gradient, reflecting the separation between heteromodal and unimodal sensory-motor regions in patterns of connectivity and in geodesic distance along the cortical surface (Margulies et al., 2016). This isolation of DMN from external inputs might allow the integration of disparate sources of information that can constrain subsequent cognition. We tested this hypothesis by manipulating the degree to which semantic decisions for ambiguous words (e.g. jam) were constrained by preceding visual cues depicting relevant spatial contexts (e.g. supermarket or road) and/or facial emotions (e.g. happy vs. frustrated). We contrasted (i) the effects of a single preceding cue with a no-cue condition employing scrambled images, and (ii) convergent spatial and emotion cues with single cues. Single cues elicited stronger activation in the multiple demand network relative to no cues, consistent with the requirement to maintain information in working memory. The availability of two convergent cues elicited stronger activation within DMN regions (bilateral angular gyrus, middle temporal gyrus, medial prefrontal cortex, and posterior cingulate), even though behavioural performance was unchanged by cueing - consequently task difficulty is unlikely to account for the observed differences in brain activation. A regions-of-interest analysis along the unimodal-to-heteromodal principal gradient revealed maximal activation for the convergent cue condition at the heteromodal end, corresponding to the DMN. Our findings are consistent with the view that regions of DMN support states of information integration that constrain ongoing cognition and provide a framework for understanding the location of these effects at the heteromodal end of the principal gradient.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Rede de Modo Padrão/fisiologia , Rede Nervosa/fisiologia , Adulto , Mapeamento Encefálico/métodos , Sinais (Psicologia) , Feminino , Humanos , Julgamento/fisiologia , Masculino , Estimulação Luminosa , Adulto Jovem
9.
Proc Natl Acad Sci U S A ; 114(48): 12821-12826, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29078345

RESUMO

Concurrent with mental processes that require rigorous computation and control, a series of automated decisions and actions govern our daily lives, providing efficient and adaptive responses to environmental demands. Using a cognitive flexibility task, we show that a set of brain regions collectively known as the default mode network plays a crucial role in such "autopilot" behavior, i.e., when rapidly selecting appropriate responses under predictable behavioral contexts. While applying learned rules, the default mode network shows both greater activity and connectivity. Furthermore, functional interactions between this network and hippocampal and parahippocampal areas as well as primary visual cortex correlate with the speed of accurate responses. These findings indicate a memory-based "autopilot role" for the default mode network, which may have important implications for our current understanding of healthy and adaptive brain processing.


Assuntos
Hipocampo/fisiologia , Processos Mentais/fisiologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Córtex Visual/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Hipocampo/anatomia & histologia , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Modelos Neurológicos , Rede Nervosa/anatomia & histologia , Rede Nervosa/diagnóstico por imagem , Vias Neurais/anatomia & histologia , Vias Neurais/diagnóstico por imagem , Testes Neuropsicológicos , Córtex Visual/anatomia & histologia , Córtex Visual/diagnóstico por imagem
10.
Neuroimage ; 202: 116045, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31349068

RESUMO

Understanding the neural processes that support different patterns of ongoing thought is an important goal of contemporary cognitive neuroscience. Early accounts assumed the default mode network (DMN) was especially important for conscious attention to task-irrelevant/personally relevant materials. However, simple task-negative accounts of the DMN are incompatible with more recent evidence that neural patterns within the system can be related to ongoing processing during active task states. To better characterise the contribution of the DMN to ongoing thought, we conducted a cross-sectional analysis of the relationship between the structural organisation of the brain, as indexed by cortical thickness, and patterns of experience, identified using experience sampling in the cognitive laboratory. In a sample of 181 healthy individuals (mean age 20 years, 117 females) we identified an association between cortical thickness in the anterior parahippocampus and patterns of task focused thought, as well as an adjacent posterior region in which cortical thickness was associated with experiences with higher levels of subjective detail. Both regions fell within regions of medial temporal lobe associated with the DMN, yet varied in their functional connectivity: the time series of signals in the 'on-task' region were more correlated with systems important for external task-relevant processing (as determined by meta-analysis) including the dorsal and ventral attention, and fronto-parietal networks. In contrast, connectivity within the region linked to subjective 'detail' was more correlated with the medial core of the DMN (posterior cingulate and the medial pre-frontal cortex) and regions of primary visual cortex. These results provide cross-sectional evidence that confirms a role of the DMN in how detailed experiences are and so provide further evidence that the role of this system in experience is not simply task-irrelevant. Our results also highlight processes within the medial temporal lobe, and their interactions with other regions of cortex, as important in determining multiple aspects of how human cognition unfolds.


Assuntos
Individualidade , Lobo Temporal/fisiologia , Pensamento/fisiologia , Adolescente , Adulto , Mapeamento Encefálico , Córtex Cerebral/anatomia & histologia , Estudos Transversais , Tomada de Decisões/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Lobo Temporal/anatomia & histologia , Adulto Jovem
11.
Hum Brain Mapp ; 40(15): 4551-4563, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31350817

RESUMO

Down's syndrome is a chromosomal disorder that invariably results in both intellectual disability and Alzheimer's disease neuropathology. However, only a limited number of studies to date have investigated intrinsic brain network organisation in people with Down's syndrome, none of which addressed the links between functional connectivity and Alzheimer's disease. In this cross-sectional study, we employed 11 C-Pittsburgh Compound-B (PiB) positron emission tomography in order to group participants with Down's syndrome based on the presence of fibrillar beta-amyloid neuropathology. We also acquired resting state functional magnetic resonance imaging data to interrogate the connectivity of the default mode network; a large-scale system with demonstrated links to Alzheimer's disease. The results revealed widespread positive connectivity of the default mode network in people with Down's syndrome (n = 34, ages 30-55, median age = 43.5) and a stark lack of anti-correlation. However, in contrast to typically developing controls (n = 20, ages 30-55, median age = 43.5), the Down's syndrome group also showed significantly weaker connections in localised frontal and posterior brain regions. Notably, while a comparison of the PiB-negative Down's syndrome group (n = 19, ages 30-48, median age = 41.0) to controls suggested that alterations in default mode connectivity to frontal brain regions are related to atypical development, a comparison of the PiB-positive (n = 15, ages 39-55, median age = 48.0) and PiB-negative Down's syndrome groups indicated that aberrant connectivity in posterior cortices is associated with the presence of Alzheimer's disease neuropathology. Such distinct profiles of altered connectivity not only further our understanding of the brain physiology that underlies these two inherently linked conditions but may also potentially provide a biomarker for future studies of neurodegeneration in people with Down's syndrome.


Assuntos
Doença de Alzheimer/fisiopatologia , Conectoma , Síndrome de Down/fisiopatologia , Adulto , Doença de Alzheimer/diagnóstico por imagem , Amiloide , Compostos de Anilina , Radioisótopos de Carbono , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Estudos Transversais , Síndrome de Down/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Tiazóis
12.
Psychol Med ; 49(7): 1185-1194, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30514410

RESUMO

BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is a developmental condition that profoundly affects quality of life. Although mounting evidence now suggests uncontrolled mind-wandering as a core aspect of the attentional problems associated with ADHD, the neural mechanisms underpinning this deficit remains unclear. To that extent, competing views argue for (i) excessive generation of task-unrelated mental content, or (ii) deficiency in the control of task-relevant cognition. METHODS: In a cross-sectional investigation of a large neurotypical cohort (n = 184), we examined alterations in the intrinsic brain functional connectivity architecture of the default mode (DMN) and frontoparietal (FPN) networks during resting state functional magnetic resonance imaging in relation to ADHD symptomatology, which could potentially underlie changes in ongoing thought within variable environmental contexts. RESULTS: The results illustrated that ADHD symptoms were linked to lower levels of detail in ongoing thought while the participants made more difficult, memory based decisions. Moreover, greater ADHD scores were associated with lower levels of connectivity between the DMN and right sensorimotor cortex, and between the FPN and right ventral visual cortex. Finally, a combination of high levels of ADHD symptomology with reduced FPN connectivity to the visual cortex was associated with reduced levels of detail in thought. CONCLUSIONS: The results of our study suggest that the frequent mind-wandering observed in ADHD may be an indirect consequence of the deficient control of ongoing cognition in response to increasing environmental demands, and that this may partly arise from dysfunctions in the intrinsic organisation of the FPN at rest.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Cognição/fisiologia , Rede Nervosa/fisiopatologia , Adolescente , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Mapeamento Encefálico , Estudos de Coortes , Estudos Transversais , Fantasia , Feminino , Lobo Frontal/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Potenciais da Membrana/fisiologia , Lobo Parietal/fisiopatologia , Pensamento/fisiologia , Córtex Visual/fisiopatologia , Adulto Jovem
13.
Brain ; 141(2): 550-567, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29293892

RESUMO

Alzheimer's disease and progressive supranuclear palsy (PSP) represent neurodegenerative tauopathies with predominantly cortical versus subcortical disease burden. In Alzheimer's disease, neuropathology and atrophy preferentially affect 'hub' brain regions that are densely connected. It was unclear whether hubs are differentially affected by neurodegeneration because they are more likely to receive pathological proteins that propagate trans-neuronally, in a prion-like manner, or whether they are selectively vulnerable due to a lack of local trophic factors, higher metabolic demands, or differential gene expression. We assessed the relationship between tau burden and brain functional connectivity, by combining in vivo PET imaging using the ligand AV-1451, and graph theoretic measures of resting state functional MRI in 17 patients with Alzheimer's disease, 17 patients with PSP, and 12 controls. Strongly connected nodes displayed more tau pathology in Alzheimer's disease, independently of intrinsic connectivity network, validating the predictions of theories of trans-neuronal spread but not supporting a role for metabolic demands or deficient trophic support in tau accumulation. This was not a compensatory phenomenon, as the functional consequence of increasing tau burden in Alzheimer's disease was a progressive weakening of the connectivity of these same nodes, reducing weighted degree and local efficiency and resulting in weaker 'small-world' properties. Conversely, in PSP, unlike in Alzheimer's disease, those nodes that accrued pathological tau were those that displayed graph metric properties associated with increased metabolic demand and a lack of trophic support rather than strong functional connectivity. Together, these findings go some way towards explaining why Alzheimer's disease affects large scale connectivity networks throughout cortex while neuropathology in PSP is concentrated in a small number of subcortical structures. Further, we demonstrate that in PSP increasing tau burden in midbrain and deep nuclei was associated with strengthened cortico-cortical functional connectivity. Disrupted cortico-subcortical and cortico-brainstem interactions meant that information transfer took less direct paths, passing through a larger number of cortical nodes, reducing closeness centrality and eigenvector centrality in PSP, while increasing weighted degree, clustering, betweenness centrality and local efficiency. Our results have wide-ranging implications, from the validation of models of tau trafficking in humans to understanding the relationship between regional tau burden and brain functional reorganization.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Conectoma/métodos , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/metabolismo , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Compostos de Anilina/farmacocinética , Mapeamento Encefálico , Carbolinas/farmacocinética , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Oxigênio/sangue , Tomografia por Emissão de Pósitrons , Descanso , Paralisia Supranuclear Progressiva/patologia , Tiazóis/farmacocinética
14.
Neuroimage ; 158: 1-11, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28655631

RESUMO

Contemporary theories assume that semantic cognition emerges from a neural architecture in which different component processes are combined to produce aspects of conceptual thought and behaviour. In addition to the state-level, momentary variation in brain connectivity, individuals may also differ in their propensity to generate particular configurations of such components, and these trait-level differences may relate to individual differences in semantic cognition. We tested this view by exploring how variation in intrinsic brain functional connectivity between semantic nodes in fMRI was related to performance on a battery of semantic tasks in 154 healthy participants. Through simultaneous decomposition of brain functional connectivity and semantic task performance, we identified distinct components of semantic cognition at rest. In a subsequent validation step, these data-driven components demonstrated explanatory power for neural responses in an fMRI-based semantic localiser task and variation in self-generated thoughts during the resting-state scan. Our findings showed that good performance on harder semantic tasks was associated with relative segregation at rest between frontal brain regions implicated in controlled semantic retrieval and the default mode network. Poor performance on easier tasks was linked to greater coupling between the same frontal regions and the anterior temporal lobe; a pattern associated with deliberate, verbal thematic thoughts at rest. We also identified components that related to qualities of semantic cognition: relatively good performance on pictorial semantic tasks was associated with greater separation of angular gyrus from frontal control sites and greater integration with posterior cingulate and anterior temporal cortex. In contrast, good speech production was linked to the separation of angular gyrus, posterior cingulate and temporal lobe regions. Together these data show that quantitative and qualitative variation in semantic cognition across individuals emerges from variations in the interaction of nodes within distinct functional brain networks.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Semântica , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Adulto Jovem
15.
J Neurosci ; 35(46): 15254-62, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26586814

RESUMO

The default mode network (DMN) has been traditionally assumed to hinder behavioral performance in externally focused, goal-directed paradigms and to provide no active contribution to human cognition. However, recent evidence suggests greater DMN activity in an array of tasks, especially those that involve self-referential and memory-based processing. Although data that robustly demonstrate a comprehensive functional role for DMN remains relatively scarce, the global workspace framework, which implicates the DMN in global information integration for conscious processing, can potentially provide an explanation for the broad range of higher-order paradigms that report DMN involvement. We used graph theoretical measures to assess the contribution of the DMN to global functional connectivity dynamics in 22 healthy volunteers during an fMRI-based n-back working-memory paradigm with parametric increases in difficulty. Our predominant finding is that brain modularity decreases with greater task demands, thus adapting a more global workspace configuration, in direct relation to increases in reaction times to correct responses. Flexible default mode regions dynamically switch community memberships and display significant changes in their nodal participation coefficient and strength, which may reflect the observed whole-brain changes in functional connectivity architecture. These findings have important implications for our understanding of healthy brain function, as they suggest a central role for the DMN in higher cognitive processing. SIGNIFICANCE STATEMENT: The default mode network (DMN) has been shown to increase its activity during the absence of external stimulation, and hence was historically assumed to disengage during goal-directed tasks. Recent evidence, however, implicates the DMN in self-referential and memory-based processing. We provide robust evidence for this network's active contribution to working memory by revealing dynamic reconfiguration in its interactions with other networks and offer an explanation within the global workspace theoretical framework. These promising findings may help redefine our understanding of the exact DMN role in human cognition.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Cognição/fisiologia , Memória de Curto Prazo/fisiologia , Modelos Neurológicos , Dinâmica não Linear , Adulto , Encéfalo/irrigação sanguínea , Feminino , Voluntários Saudáveis , Humanos , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/irrigação sanguínea , Rede Nervosa/fisiologia , Testes Neuropsicológicos , Adulto Jovem
16.
Cereb Cortex ; 24(8): 2141-50, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23508710

RESUMO

Mild cerebral ventricular enlargement is associated with schizophrenia, autism, epilepsy, and attention-deficit/hyperactivity disorder. Fetal ventriculomegaly is the most common central nervous system (CNS) abnormality affecting 1% of fetuses and is associated with cognitive, language, and behavioral impairments in childhood. Neurodevelopmental outcome is partially predictable by the 2-dimensional size of the ventricles in the absence of other abnormalities. We hypothesized that isolated fetal ventriculomegaly is a marker of altered brain development characterized by relative overgrowth and aimed to quantify brain growth using volumetric magnetic resonance imaging (MRI) in fetuses with isolated ventriculomegaly. Fetal brain MRI (1.5 T) was performed in 60 normal fetuses and 65 with isolated ventriculomegaly, across a gestational age range of 22-38 weeks. Volumetric analysis of the ventricles and supratentorial brain structures was performed on 3-dimensional reconstructed datasets. Fetuses with isolated ventriculomegaly had increased brain parenchyma volumes when compared with the control cohort (9.6%, P < 0.0001) with enlargement restricted to the cortical gray matter (17.2%, P = 0.002). The extracerebral cerebrospinal fluid and third and fourth ventricles were also enlarged. White matter, basal ganglia, and thalamic volumes were not significantly different between cohorts. The presence of relative cortical overgrowth in fetuses with ventriculomegaly may represent the neurobiological substrate for cognitive, language, and behavioral deficits in these children.


Assuntos
Encéfalo/embriologia , Ventrículos Cerebrais/embriologia , Doenças Fetais/patologia , Hidrocefalia/embriologia , Hidrocefalia/patologia , Encéfalo/patologia , Ventrículos Cerebrais/patologia , Feminino , Feto , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão
17.
Cerebellum ; 12(5): 632-44, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23553467

RESUMO

Fetal magnetic resonance imaging (MRI) is now routinely used to further investigate cerebellar malformations detected with ultrasound. However, the lack of 2D and 3D biometrics in the current literature hinders the detailed characterisation and classification of cerebellar anomalies. The main objectives of this fetal neuroimaging study were to provide normal posterior fossa growth trajectories during the second and third trimesters of pregnancy via semi-automatic segmentation of reconstructed fetal brain MR images and to assess common cerebellar malformations in comparison with the reference data. Using a 1.5-T MRI scanner, 143 MR images were obtained from 79 normal control and 53 fetuses with posterior fossa abnormalities that were grouped according to the severity of diagnosis on visual MRI inspections. All quantifications were performed on volumetric datasets, and supplemental outcome information was collected from the surviving infants. Normal growth trajectories of total brain, cerebellar, vermis, pons and fourth ventricle volumes showed significant correlations with 2D measurements and increased in second-order polynomial trends across gestation (Pearson r, p < 0.05). Comparison of normal controls to five abnormal cerebellum subgroups depicted significant alterations in volumes that could not be detected exclusively with 2D analysis (MANCOVA, p < 0.05). There were 15 terminations of pregnancy, 8 neonatal deaths, and a spectrum of genetic and neurodevelopmental outcomes in the assessed 24 children with cerebellar abnormalities. The given posterior fossa biometrics enhance the delineation of normal and abnormal cerebellar phenotypes on fetal MRI and confirm the advantages of utilizing advanced neuroimaging tools in clinical fetal research.


Assuntos
Doenças Cerebelares/patologia , Cerebelo/patologia , Fossa Craniana Posterior/patologia , Feto/patologia , Imageamento por Ressonância Magnética , Adulto , Cerebelo/anormalidades , Criança , Fossa Craniana Posterior/anormalidades , Feminino , Feto/diagnóstico por imagem , Idade Gestacional , Humanos , Processamento de Imagem Assistida por Computador/métodos , Lactente , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Gravidez , Radiografia , Ultrassonografia Pré-Natal/métodos , Adulto Jovem
18.
Neuroscientist ; 29(4): 393-420, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35611670

RESUMO

What is the role of the brain's ongoing activity for cognition? The predominant perspectives associate ongoing brain activity with resting state, the default-mode network (DMN), and internally oriented mentation. This triad is often contrasted with task states, non-DMN brain networks, and externally oriented mentation, together comprising a "dual model" of brain and cognition. In opposition to this duality, however, we propose that ongoing brain activity serves as a neuronal baseline; this builds upon Raichle's original search for the default mode of brain function that extended beyond the canonical default-mode brain regions. That entails what we refer to as the "baseline model." Akin to an internal biological clock for the rest of the organism, the ongoing brain activity may serve as an internal point of reference or standard by providing a shared neural code for the brain's rest as well as task states, including their associated cognition. Such shared neural code is manifest in the spatiotemporal organization of the brain's ongoing activity, including its global signal topography and dynamics like intrinsic neural timescales. We conclude that recent empirical evidence supports a baseline model over the dual model; the ongoing activity provides a global shared neural code that allows integrating the brain's rest and task states, its DMN and non-DMN, and internally and externally oriented cognition.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Encéfalo/fisiologia , Cognição , Mapeamento Encefálico , Estudos Longitudinais , Rede Nervosa/fisiologia
19.
Psychoradiology ; 3: kkad016, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38666118

RESUMO

Background: The involvement of specific basal ganglia-thalamocortical circuits in response inhibition has been extensively mapped in animal models. However, the pivotal nodes and directed causal regulation within this inhibitory circuit in humans remains controversial. Objective: The main aim of the present study was to determine the causal information flow and critical nodes in the basal ganglia-thalamocortical inhibitory circuits and also to examine whether these are modulated by biological factors (i.e. sex) and behavioral performance. Methods: Here, we capitalize on the recent progress in robust and biologically plausible directed causal modeling (DCM-PEB) and a large response inhibition dataset (n = 250) acquired with concomitant functional magnetic resonance imaging to determine key nodes, their causal regulation and modulation via biological variables (sex) and inhibitory performance in the inhibitory circuit encompassing the right inferior frontal gyrus (rIFG), caudate nucleus (rCau), globus pallidum (rGP), and thalamus (rThal). Results: The entire neural circuit exhibited high intrinsic connectivity and response inhibition critically increased causal projections from the rIFG to both rCau and rThal. Direct comparison further demonstrated that response inhibition induced an increasing rIFG inflow and increased the causal regulation of this region over the rCau and rThal. In addition, sex and performance influenced the functional architecture of the regulatory circuits such that women displayed increased rThal self-inhibition and decreased rThal to GP modulation, while better inhibitory performance was associated with stronger rThal to rIFG communication. Furthermore, control analyses did not reveal a similar key communication in a left lateralized model. Conclusions: Together, these findings indicate a pivotal role of the rIFG as input and causal regulator of subcortical response inhibition nodes.

20.
Nat Commun ; 12(1): 2134, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837220

RESUMO

The categorisation of long-term memory into semantic and episodic systems has been an influential catalyst for research on human memory organisation. However, the impact of variable cognitive control demands on this classical distinction remains to be elucidated. Across two independent experiments, here we directly compare neural processes for the controlled versus automatic retrieval of semantic and episodic memory. In a multi-session functional magnetic resonance imaging experiment, we first identify a common cluster of cortical activity centred on the left inferior frontal gyrus and anterior insular cortex for the retrieval of both weakly-associated semantic and weakly-encoded episodic memory traces. In an independent large-scale individual difference study, we further reveal a common neural circuitry in which reduced functional interaction between the identified cluster and ventromedial prefrontal cortex, a default mode network hub, is linked to better performance across both memory types. Our results provide evidence for shared neural processes supporting the controlled retrieval of information from functionally distinct long-term memory systems.


Assuntos
Cognição/fisiologia , Memória Episódica , Memória de Longo Prazo/fisiologia , Rememoração Mental/fisiologia , Córtex Pré-Frontal/fisiologia , Adolescente , Adulto , Mapeamento Encefálico , Feminino , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Pré-Frontal/diagnóstico por imagem , Semântica , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA