Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 631(8021): 593-600, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38926583

RESUMO

The current technologies to place new DNA into specific locations in plant genomes are low frequency and error-prone, and this inefficiency hampers genome-editing approaches to develop improved crops1,2. Often considered to be genome 'parasites', transposable elements (TEs) evolved to insert their DNA seamlessly into genomes3-5. Eukaryotic TEs select their site of insertion based on preferences for chromatin contexts, which differ for each TE type6-9. Here we developed a genome engineering tool that controls the TE insertion site and cargo delivered, taking advantage of the natural ability of the TE to precisely excise and insert into the genome. Inspired by CRISPR-associated transposases that target transposition in a programmable manner in bacteria10-12, we fused the rice Pong transposase protein to the Cas9 or Cas12a programmable nucleases. We demonstrated sequence-specific targeted insertion (guided by the CRISPR gRNA) of enhancer elements, an open reading frame and a gene expression cassette into the genome of the model plant Arabidopsis. We then translated this system into soybean-a major global crop in need of targeted insertion technology. We have engineered a TE 'parasite' into a usable and accessible toolkit that enables the sequence-specific targeting of custom DNA into plant genomes.


Assuntos
Arabidopsis , Sistemas CRISPR-Cas , Elementos de DNA Transponíveis , Edição de Genes , Genoma de Planta , Oryza , Transposases , Transposases/metabolismo , Transposases/genética , Arabidopsis/genética , Oryza/genética , Genoma de Planta/genética , Elementos de DNA Transponíveis/genética , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Fases de Leitura Aberta/genética , Elementos Facilitadores Genéticos/genética , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , Mutagênese Insercional/genética , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Engenharia Genética/métodos , Plantas Geneticamente Modificadas/genética , Endodesoxirribonucleases
2.
New Phytol ; 239(5): 1834-1851, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36829298

RESUMO

Central metabolism produces amino and fatty acids for protein and lipids that establish seed value. Biosynthesis of storage reserves occurs in multiple organelles that exchange central intermediates including two essential metabolites, malate, and pyruvate that are linked by malic enzyme. Malic enzyme can be active in multiple subcellular compartments, partitioning carbon and reducing equivalents for anabolic and catabolic requirements. Prior studies based on isotopic labeling and steady-state metabolic flux analyses indicated malic enzyme provides carbon for fatty acid biosynthesis in plants, though genetic evidence confirming this role is lacking. We hypothesized that increasing malic enzyme flux would alter carbon partitioning and result in increased lipid levels in soybeans. Homozygous transgenic soybean plants expressing Arabidopsis malic enzyme alleles, targeting the translational products to plastid or outside the plastid during seed development, were verified by transcript and enzyme activity analyses, organelle proteomics, and transient expression assays. Protein, oil, central metabolites, cofactors, and acyl-acyl carrier protein (ACPs) levels were quantified overdevelopment. Amino and fatty acid levels were altered resulting in an increase in lipids by 0.5-2% of seed biomass (i.e. 2-9% change in oil). Subcellular targeting of a single gene product in central metabolism impacts carbon and reducing equivalent partitioning for seed storage reserves in soybeans.


Assuntos
Arabidopsis , Carbono , Carbono/metabolismo , Glycine max/metabolismo , Sementes/metabolismo , Ácidos Graxos/metabolismo , Arabidopsis/genética
3.
Front Plant Sci ; 13: 860971, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35599865

RESUMO

For maize genome-editing and bioengineering, genetic transformation of inbred genotypes is most desired due to the uniformity of genetic background in their progenies. However, most maize inbred lines are recalcitrant to tissue culture and transformation. A public, transformable maize inbred B104 has been widely used for genome editing in recent years. This is primarily due to its high degree of genetic similarity shared with B73, an inbred of the reference genome and parent of many breeding populations. Conventional B104 maize transformation protocol requires 16-22 weeks to produce rooted transgenic plants with an average of 4% transformation frequency (number of T0 plants per 100 infected embryos). In this Method paper, we describe an advanced B104 transformation protocol that requires only 7-10 weeks to generate transgenic plants with an average of 6.4% transformation frequency. Over 66% of transgenic plants carried CRISPR/Cas9-induced indel mutations on the target gene, demonstrating that this protocol can be used for genome editing applications. Following the detailed and stepwise procedure described here, this quick and simplified method using the Agrobacterium ternary vector system consisting of a T-DNA binary vector and a compatible helper plasmid can be readily transferable to interested researchers.

4.
Curr Protoc ; 1(5): e127, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33999520

RESUMO

Setaria viridis is an emerging model system for the genetic and molecular characterization of cereals and bioenergy crops. Here, we describe a detailed procedure for genetic transformation of the S. viridis accession line ME034V-1. This method utilizes callus generated from mature seeds for infection with Agrobacterium tumefaciens strain AGL1 to regenerate hygromycin-resistant stable transgenic plants. It takes approximately 7 weeks to generate callus from mature seeds, 11-17 weeks from infection to the regeneration of transgenic lines, and an additional 3-4 weeks for plant growth in the greenhouse for seed collection. The protocol as presented consistently results in transformation frequency of approximately 25% for the generation of transgenic plants, with fewer escapes and higher survivability in soil for optimal seed collection. © 2021 Donald Danforth Plant Science Center. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Generation of S. viridis (Accession ME034V-1) callus from mature seeds Basic Protocol 2: Agrobacterium-mediated transformation of callus to generate transgenic plants Basic Protocol 3: Plantlet transplantation in soil, plant growth in greenhouse, and seed collection Support Protocol: Preparation of Agrobacterium culture for infection.


Assuntos
Setaria (Planta) , Agrobacterium tumefaciens/genética , Produtos Agrícolas/genética , Grão Comestível , Plantas Geneticamente Modificadas/genética , Setaria (Planta)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA