Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(1): 255-265, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36525634

RESUMO

We investigated the aqueous solubility and thermodynamic properties of two meta-autunite group uranyl arsenate solids (UAs). The measured solubility products (log Ksp) obtained in dissolution and precipitation experiments at equilibrium pH 2 and 3 for NaUAs and KUAs ranged from -23.50 to -22.96 and -23.87 to -23.38, respectively. The secondary phases (UO2)(H2AsO4)2(H2O)(s) and trögerite, (UO2)3(AsO4)2·12H2O(s), were identified by powder X-ray diffraction in the reacted solids of KUA precipitation experiments (pH 2) and NaUAs dissolution and precipitation experiments (pH 3), respectively. The identification of these secondary phases in reacted solids suggest that H3O+ co-occurring with Na or K in the interlayer region can influence the solubilities of uranyl arsenate solids. The standard-state enthalpy of formation from the elements (ΔHf-el) of NaUAs is -3025 ± 22 kJ mol-1 and for KUAs is -3000 ± 28 kJ mol-1 derived from measurements by drop solution calorimetry, consistent with values reported in other studies for uranyl phosphate solids. This work provides novel thermodynamic information for reactive transport models to interpret and predict the influence of uranyl arsenate solids on soluble concentrations of U and As in contaminated waters affected by mining legacy and other anthropogenic activities.


Assuntos
Arseniatos , Solubilidade , Termodinâmica
2.
Environ Sci Technol ; 55(23): 16246-16256, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34797046

RESUMO

We investigated interfacial reactions of U(VI) in the presence of Suwannee River natural organic matter (NOM) at acidic and neutral pH. Laboratory batch experiments show that the adsorption and precipitation of U(VI) in the presence of NOM occur at pH 2 and pH 4, while the aqueous complexation of U by dissolved organic matter is favored at pH 7, preventing its precipitation. Spectroscopic analyses indicate that U(VI) is mainly adsorbed to the particulate organic matter at pH 4. However, U(VI)-bearing ultrafine to nanocrystalline solids were identified at pH 4 by electron microscopy. This study shows the promotion of U(VI) precipitation by NOM at low pH which may be relevant to the formation of mineralized deposits, radioactive waste repositories, wetlands, and other U- and organic-rich environmental systems.


Assuntos
Resíduos Radioativos , Urânio , Adsorção , Matéria Orgânica Dissolvida , Concentração de Íons de Hidrogênio , Urânio/análise
3.
Environ Sci Technol ; 55(14): 9949-9957, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34235927

RESUMO

Particulate matter (PM) presents an environmental health risk for communities residing close to uranium (U) mine sites. However, the role of the particulate form of U on its cellular toxicity is still poorly understood. Here, we investigated the cellular uptake and toxicity of C-rich U-bearing particles as a model organic particulate containing uranyl citrate over a range of environmentally relevant concentrations of U (0-445 µM). The cytotoxicity of C-rich U-bearing particles in human epithelial cells (A549) was U-dose-dependent. No cytotoxic effects were detected with soluble U doses. Carbon-rich U-bearing particles with a wide size distribution (<10 µm) presented 2.7 times higher U uptake into cells than the particles with a narrow size distribution (<1 µm) at 100 µM U concentration. TEM-EDS analysis identified the intracellular translocation of clusters of C-rich U-bearing particles. The accumulation of C-rich U-bearing particles induced DNA damage and cytotoxicity as indicated by the increased phosphorylation of the histone H2AX and cell death, respectively. These findings reveal the toxicity of the particulate form of U under environmentally relevant heterogeneous size distributions. Our study opens new avenues for future investigations on the health impacts resulting from environmental exposures to the particulate form of U near mine sites.


Assuntos
Urânio , Carbono , Carvão Mineral , Poeira/análise , Humanos , Material Particulado/análise , Material Particulado/toxicidade , Urânio/análise , Urânio/toxicidade
4.
J Toxicol Environ Health A ; 84(12): 503-517, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33682625

RESUMO

The Southwestern United States has a legacy of industrial mining due to the presence of rich mineral ore deposits. The relationship between environmental inhaled particulate matter (PM) exposures and neurological outcomes within an autoimmune context is understudied. The aim of this study was to compare two regionally-relevant dusts from high-priority abandoned mine-sites, Claim 28 PM, from Blue Gap Tachee, AZ and St. Anthony mine PM, from the Pueblo of Laguna, NM and to expose autoimmune-prone mice (NZBWF1/J). Mice were randomly assigned to one of three groups (n = 8/group): DM (dispersion media, control), Claim 28 PM, or St. Anthony PM, subjected to oropharyngeal aspiration of (100 µg/50 µl), once per week for a total of 4 consecutive doses. A battery of immunological and neurological endpoints was assessed at 24 weeks of age including: bronchoalveolar lavage cell counts, lung gene expression, brain immunohistochemistry, behavioral tasks and serum autoimmune biomarkers. Bronchoalveolar lavage results demonstrated a significant increase in number of polymorphonuclear neutrophils following Claim 28 and St. Anthony mine PM aspiration. Lung mRNA expression showed significant upregulation in CCL-2 and IL-1ß following St. Anthony mine PM aspiration. In addition, neuroinflammation was present in both Claim 28 and St. Anthony mine-site derived PM exposure groups. Behavioral tasks resulted in significant deficits as determined by Y-maze new arm frequency following Claim 28 aspiration. Neutrophil elastase was significantly upregulated in the St. Anthony mine exposure group. Interestingly, there were no significant changes in serum autoantigens suggesting systemic inflammatory effects may be mediated through other molecular mechanisms following low-dose PM exposures.


Assuntos
Poluentes Atmosféricos/toxicidade , Poeira/análise , Encefalite/fisiopatologia , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Material Particulado/toxicidade , Pneumonia/fisiopatologia , Animais , Arizona , Doenças Autoimunes/etiologia , Biomarcadores/metabolismo , Modelos Animais de Doenças , Poeira/imunologia , Encefalite/induzido quimicamente , Feminino , Exposição por Inalação/efeitos adversos , Camundongos , Mineração , New Mexico , Tamanho da Partícula , Pneumonia/induzido quimicamente , Distribuição Aleatória
5.
Environ Sci Technol ; 53(10): 5758-5767, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30998849

RESUMO

We investigated the functional group chemistry of natural organic matter (NOM) associated with both U(IV) and U(VI) in solids from mineralized deposits exposed to oxidizing conditions from the Jackpile Mine, Laguna Pueblo, NM. The uranium (U) content in unreacted samples was 0.44-2.6% by weight determined by X-ray fluorescence. In spite of prolonged exposure to ambient oxidizing conditions, ≈49% of U(IV) and ≈51% of U(VI) were identified on U LIII edge extended X-ray absorption fine structure spectra. Loss on ignition and thermogravimetric analyses identified from 13% to 44% of NOM in the samples. Carbonyl, phenolic, and carboxylic functional groups in the unreacted samples were identified by fitting of high-resolution X-ray photoelectron spectroscopy (XPS) C 1s and O 1s spectra. Peaks corresponding to phenolic and carbonyl functional groups had intensities higher than those corresponding to carboxylic groups in samples from the supernatant from batch extractions conducted at pH 13, 7, and 2. U(IV) and U(VI) species were detected in the supernatant after batch extractions conducted under oxidizing conditions by fitting of high-resolution XPS U 4f spectra. The outcomes from this study highlight the importance of the influence of pH on the organic functional group chemistry and U speciation in mineralized deposits.


Assuntos
Urânio , New Mexico , Oxirredução , Espectroscopia Fotoeletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA