RESUMO
Experimental investigations of nano-scale spatio-temporal effects that occur on the friction surface under extreme tribological stimuli, in combination with thermodynamic modeling of the self-organization process, are presented in this paper. The study was performed on adaptive PVD (physical vapor deposited) coatings represented by the TiAlCrSiYN/TiAlCrN nano-multilayer PVD coating. A detailed analysis of the worn surface was conducted using scanning electron microscopy and energy dispersive spectroscopy (SEM/EDS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES) methods. It was demonstrated that the coating studied exhibits a very fast adaptive response to the extreme external stimuli through the formation of an increased amount of protective surface tribo-films at the very beginning of the running-in stage of wear. Analysis performed on the friction surface indicates that all of the tribo-film formation processes occur in the nanoscopic scale. The tribo-films form as thermal barrier tribo-ceramics with a complex composition and very low thermal conductivity under high operating temperatures, thus demonstrating reduced friction which results in low cutting forces and wear values. This process presents an opportunity for the surface layer to attain a strong non-equilibrium state. This leads to the stabilization of the exchanging interactions between the tool and environment at a low wear level. This effect is the consequence of the synergistic behavior of complex matter represented by the dynamically formed nano-scale tribo-film layer.
RESUMO
This study aims to optimize the performance of CrN coatings deposited on WC cutting tools for machining Ti6Al4V alloy, where the formation of built-up edge (BUE) is a prevalent and critical issue. In-house CrN coatings were developed using the PVD (Physical Vapor Deposition) process, with variations in deposition parameters including nitrogen gas pressure, bias voltage, and coating thickness. A comprehensive experimental approach encompassing deposition, characterization, and machining performance evaluation was employed to identify the optimal deposition conditions. The results indicated that CrN coatings deposited at a nitrogen gas pressure of 4 Pa, a bias voltage of -50 V, and a thickness of 1.81 µm exhibited superior performance, significantly reducing BUE formation and tool wear. These optimized coatings demonstrated enhanced properties, such as a higher elastic modulus and a lower coefficient of friction, which contributed to improved tool life and machining performance. Comparative studies with commercial CrN coatings revealed that the in-house developed coatings outperformed the commercial variants by approximately 65% in tool life, owing to their superior mechanical properties and reduced friction. This research highlights the potential of tailored CrN coatings for advanced machining applications and emphasizes the importance of optimizing deposition parameters to achieve high-performance tool coatings.
RESUMO
The Ti-5Al-5V-5Mo-3Cr (Ti-5553) alloy is a relatively novel difficult-to-cut material with limited machinability and tool life analysis available in the literature, and hence requires further investigation. This study focuses on the machining and tribological performance of Ti-5553 under high-speed finish turning (150 m/min, 175 m/min, and 200 m/min) via novel mono/bi-layered PVD-coated WC tools. A base AlTiN coating is used as the reference monolayer coating, with AlCrN, diamond-like ta-C, and TiAlSiN coatings each deposited on top of a base AlTiN coating, totaling four separate coated tools (one monolayer and three bi-layer). Tool life, cutting forces, workpiece surface quality, and tribological chip analysis are among the subjects of investigation in this study. Overall, the AlTiN/AlCrN coated tool outperformed all the other combinations: an improvement of ~19% in terms of tool life in reference to the base AlTiN coating when averaging across the three speeds; lowest surface roughness values: ~0.30, 0.33, and 0.64 µm; as well as the lowest chip back surface roughness values: ~0.80, 0.68, and 0.81 µm at 150, 175, and 200 m/min, respectively. These results indicate that the AlTiN/AlCrN coating is an excellent candidate for industrial applications involving high-speed machining of Ti-5553.
RESUMO
Adaptive wear-resistant coatings produced by physical vapor deposition (PVD) are a relatively new generation of coatings which are attracting attention in the development of nanostructured materials for extreme tribological applications. An excellent example of such extreme operating conditions is high performance machining of hard-to-cut materials. The adaptive characteristics of such coatings develop fully during interaction with the severe environment. Modern adaptive coatings could be regarded as hierarchical surface-engineered nanostructural materials. They exhibit dynamic hierarchy on two major structural scales: (a) nanoscale surface layers of protective tribofilms generated during friction and (b) an underlying nano/microscaled layer. The tribofilms are responsible for some critical nanoscale effects that strongly impact the wear resistance of adaptive coatings. A new direction in nanomaterial research is discussed: compositional and microstructural optimization of the dynamically regenerating nanoscaled tribofilms on the surface of the adaptive coatings during friction. In this review we demonstrate the correlation between the microstructure, physical, chemical and micromechanical properties of hard coatings in their dynamic interaction (adaptation) with environment and the involvement of complex natural processes associated with self-organization during friction. Major physical, chemical and mechanical characteristics of the adaptive coating, which play a significant role in its operating properties, such as enhanced mass transfer, and the ability of the layer to provide dissipation and accumulation of frictional energy during operation are presented as well. Strategies for adaptive nanostructural coating design that enhance beneficial natural processes are outlined. The coatings exhibit emergent behavior during operation when their improved features work as a whole. In this way, as higher-ordered systems, they achieve multifunctionality and high wear resistance under extreme tribological conditions.
RESUMO
Optimization of the composition of a new generation of bi-nano-multilayered TiAlCrSiN/TiAlCrN-based coatings is outlined in this study for the machining of direct aged (DA) Inconel 718 alloy. Three types of TiAlCrSiN/TiAlCrN-based bi-nano-multi-layer coatings with varying chemical compositions were investigated: (1) a previous state-of-the-art Ti0.2Al0.55Cr0.2Si0.03Y0.02N/Ti0.25Al0.65Cr0.1N (coating A); (2) Ti0.2Al0.52Cr0.2Si0.08N/Ti0.25Al0.65Cr0.1N with increased amount of Si (up to 8 at.%; coating B); (3) a new Ti0.18Al0.55Cr0.17Si0.05Y0.05N/Ti0.25Al0.65Cr0.1N coating (coating C) with an increased amount of both Si and Y (up to 5 at.% each). The structure of each coating was evaluated by XRD analysis. Micro-mechanical characteristics were investigated using a MicroMaterials NanoTest system and an Anton Paar-RST3 tester. The wear performance of nano-multilayered TiAlCrSiN/TiAlCrN-based coatings was evaluated during the finish turning of direct aged (DA) Inconel 718 alloy. The wear patterns were assessed using optical microscopy imaging. The tribological performance was evaluated through (a) a detailed chip characteristic study and (b) XPS studies of the worn surface of the coated cutting tool. The difference in tribological performance was found to correspond with the type and amount of tribo-films formed on the friction surface under operation. Simultaneous formation of various thermal barrier tribo-films, such as sapphire, mullite, and garnet, was observed. The overall amount of beneficial tribo-films was found to be greater in the new Ti0.18Al0.55Cr0.17Si 0.05Y0.05N/Ti0.25Al0.65Cr0.1N nano-bi-multilayer coating (coating C) than in the previous state-of-the-art coatings (A and B). This resulted in over two-fold improvement of this coating's tool life compared with those of the commercial benchmark AlTiN coating and coating B, as well as a 40% improvement of the tool life of the previous state-of-the-art coating A. Multi-scale self-organization processes were observed: nano-scale tribo-film formation on the cutting tool surface combined with micro-scale generation of strain-induced martensite zones as a result of intensive metal flow during chip formation. Both of these processes are strongly enhanced in the newly developed coating C.
RESUMO
The micromechanism of the low-cycle fatigue of mono- and multilayer PVD coatings on cutting tools was investigated. Multilayer nanolaminate (TiAlCrSiY)N/(TiAlCr)N and monolayer (TiAlCrSiY)N PVD coatings were deposited on the cemented carbide ball nose end mills. Low-cycle fatigue resistance was studied using the cyclic nanoindentation technique. The obtained results were compared with the behaviour of the polycrystalline silicon reference sample. The fractal analysis of time-resolved curves for indenter penetration depth demonstrated regularities of damage accumulation in the coatings at the early stage of wear. The difference in low-cycle fatigue of the brittle silicon and nitride wear-resistant coatings is shown. It is demonstrated that when distinguished from the single layer (TiAlCrSiY)N coating, the nucleation and growth of microcracks in the multilayer (TiAlCrSiY)N/(TiAlCr)N coating is accompanied by acts of microplastic deformation providing a higher fracture toughness of the multilayer nanolaminate (TiAlCrSiY)N/(TiAlCr)N.
RESUMO
Polyvinylidene fluoride (PVDF) is an advanced functional polymer which exhibits excellent chemical and thermal stability, and good mechanical, piezoelectric and ferroelectic properties. This work opens a new strategy for the fabrication of nanocomposites, combining the functional properties of PVDF and advanced inorganic nanomaterials. Electrophoretic deposition (EPD) has been developed for the fabrication of films containing PVDF and nanoparticles of TiO2, MnO2 and NiFe2O4. An important finding was the feasibility of EPD of electrically neutral PVDF and inorganic nanoparticles using caffeic acid (CA) and catechol violet (CV) as co-dispersants. The experiments revealed strong adsorption of CA and CV on PVDF and inorganic nanoparticles, which involved different mechanisms and facilitated particle dispersion, charging and deposition. The analysis of the deposition yield data, chemical structure of the dispersants and the microstructure and composition of the films provided an insight into the adsorption and dispersion mechanisms and the influence of deposition conditions on the deposition rate, film microstructure and composition. PVDF films provided the corrosion protection of stainless steel. Overcoming the limitations of other techniques, this investigation demonstrates a conceptually new approach for the fabrication of PVDF-NiFe2O4 films, which showed superparamagnetic properties. The approach developed in this investigation offers versatile strategies for the EPD of advanced organic-inorganic nanocomposites.
RESUMO
The machining of Ti6Al4V alloy, especially at low cutting speeds, is associated with strong Built-Up Edge (BUE) formation. The PVD coatings applied on cutting tools to machine such materials must have the necessary combination of properties to address such an underlying wear mechanism. The present work investigates and shows that TiB2 PVD coating can be designed to have certain mechanical properties and tribological characteristics that improve machining in cases where BUE formation is observed. Three TiB2 coatings were studied: one low hardness coating and two high hardness coatings with varied coating thicknesses. Wear performances for the various TiB2 coated carbide tools were evaluated while rough turning Ti6Al4V. Tool wear characteristics were evaluated using tool life studies and the 3D wear volume measurements of the worn surface. Chip morphology analyses were done to assess the in-situ tribological performance of the coatings. The micro-mechanical properties of the coatings were also studied in detail to co-relate with the coatings' performances. The results obtained show that during the rough turning of Ti6Al4V alloy with intensive BUE formation, the harder TiB2 coatings performed worse, with coating delamination on the rake surface under operation, whereas the softer version of the coating exhibited significantly better tool life without significant coating failure.
RESUMO
The aim of this research is to utilize reverse engineering approach for the identification of the elements and phases available in the commercial CERMET inserts with the help of characterization techniques such as Scanning Electron Microscope (SEM), Energy-dispersive X-ray spectroscopy (EDS), and X-Ray Deposition (XRD). Four commercial CERMET inserts were investigated in this research work, and the effect of the composition and phases are related to its tool wear mechanism and performance. Each CERMET insert is used to perform a turning process on a CNC lathe for machining stainless steel (SS) under the dry condition at a fixed cutting length interval. Once it completes machining for a fixed cutting length, the CERMET insert is taken out to investigate its wear mechanism with the help of SEM, EDS, XRD and using a focus-variation microscope (Alicona). A correlation analysis is performed to relate progressive tool wear mechanisms with elements and their relevant phases of various carbides. The approach of correlating wear property with the phase content will contribute to the understanding of the wear mechanism under such extreme machining conditions. It will serve as a reference for the improvement of the performance of these CERMET inserts for such harsh machining conditions by the development of protective coatings for these CERMET inserts based on the identification of the composition and phases that improves tool life and reduces wear. The data related research work can be found at "https://doi.org/10.1016/j.wear.2020.203285" [1].
RESUMO
The relationship between the wear process and the adaptive response of the coated cutting tool to external stimuli is demonstrated in this review paper. The goal of the featured case studies is to achieve control over the behavior of the tool/workpiece tribo-system, using an example of severe tribological conditions present under machining with intensive built-up edge (BUE) formation. The built-ups developed during the machining process are dynamic structures with a dual role. On one hand they exhibit protective functions but, on the other hand, the process of built-up edge formation is similar to an avalanche. Periodical growth and breakage of BUE eventually leads to tooltip failure and catastrophe of the entire tribo-system. The process of BUE formation is governed by the stick-slip phenomenon occurring at the chip/tool interface which is associated with the self-organized critical process (SOC). This process could be potentially brought under control through the engineered adaptive response of the tribo-system, with the goal of reducing the scale and frequency of the occurring avalanches (built-ups). A number of multiscale frictional processes could be used to achieve this task. Such processes are associated with the strongly non-equilibrium process of self-organization during friction (nano-scale tribo-films formation) as well as physical-chemical and mechanical processes that develop on a microscopic scale inside the coating layer and the carbide substrate. Various strategies for achieving control over wear behavior are presented in this paper using specific machining case studies of several hard-to-cut materials such as stainless steels, titanium alloy (TiAl6V4), compacted graphitic iron (CGI), each of which typically undergoes strong built-up edge formation. Various categories of hard coatings deposited by different physical vapor deposition (PVD) and chemical vapor deposition (CVD) methods are applied on cutting tools and the results of their tribological and wear performance studies are presented. Future research trends are outlined as well.
RESUMO
Use of an alpha-beta (multiphase HCP-BCC) titanium alloy, Ti6Al4V, is ubiquitous in a wide range of engineering applications. The previous decade of finite element analysis research on various titanium alloys for numerous biomedical applications especially in the field of orthopedics has led to the development of more than half a dozen material constitutive models, with no comparison available between them. Part of this problem stems from the complexity of developing a vectorised user-defined material subroutine (VUMAT) and the different conditions (strain rate, temperature and composition of material) in which these models are experimentally informed. This paper examines the extant literature to review these models and provides quantitative benchmarking against the tabulated material model and a power law model of Ti6Al4V taking the test case of a uniaxial tensile and cutting simulation.
Assuntos
Materiais Biocompatíveis/química , Engenharia/normas , Teste de Materiais/métodos , Titânio/química , Algoritmos , Ligas , Pressão , Software , Estresse Mecânico , Propriedades de Superfície , Resistência à TraçãoRESUMO
Additive manufacturing (AM) of high-strength Al alloys promises to enhance the performance of critical components related to various aerospace and automotive applications. The key advantage of AM is its ability to generate lightweight, robust, and complex shapes. However, the characteristics of the as-built parts may represent an obstacle to the satisfaction of the parts' quality requirements. The current study investigates the influence of selective laser melting (SLM) process parameters on the quality of parts fabricated from different Al alloys. A design of experiment (DOE) was used to analyze relative density, porosity, surface roughness, and dimensional accuracy according to the interaction effect between the SLM process parameters. The results show a range of energy densities and SLM process parameters for AlSi10Mg and Al6061 alloys needed to achieve "optimum" values for each performance characteristic. A process map was developed for each material by combining the optimized range of SLM process parameters for each characteristic to ensure good quality of the as-built parts. This study is also aimed at reducing the amount of post-processing needed according to the optimal processing window detected.
RESUMO
Additive manufacturing (AM) offers customization of the microstructures and mechanical properties of fabricated components according to the material selected and process parameters applied. Selective laser melting (SLM) is a commonly-used technique for processing high strength aluminum alloys. The selection of SLM process parameters could control the microstructure of parts and their mechanical properties. However, the process parameters limit and defects obtained inside the as-built parts present obstacles to customized part production. This study investigates the influence of SLM process parameters on the quality of as-built Al6061 and AlSi10Mg parts according to the mutual connection between the microstructure characteristics and mechanical properties. The microstructure of both materials was characterized for different parts processed over a wide range of SLM process parameters. The optimized SLM parameters were investigated to eliminate internal microstructure defects. The behavior of the mechanical properties of parts was presented through regression models generated from the design of experiment (DOE) analysis for the results of hardness, ultimate tensile strength, and yield strength. A comparison between the results obtained and those reported in the literature is presented to illustrate the influence of process parameters, build environment, and powder characteristics on the quality of parts produced. The results obtained from this study could help to customize the part's quality by satisfying their design requirements in addition to reducing as-built defects which, in turn, would reduce the amount of the post-processing needed.
RESUMO
In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,Al)N deposited by physical vapor deposition (PVD) have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel) by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC) and one central rotating cathode (CERC). The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM) and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si3N4 nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds.
RESUMO
Respiratory distress syndrome (RDS) is one of the main causes of fatality in newborn infants, particularly in neonates with low birth-weight. Commercial extracorporeal oxygenators have been used for low-birth-weight neonates in neonatal intensive care units. However, these oxygenators require high blood volumes to prime. In the last decade, microfluidics oxygenators using enriched oxygen have been developed for this purpose. Some of these oxygenators use thin polydimethylsiloxane (PDMS) membranes to facilitate gas exchange between the blood flowing in the microchannels and the ambient air outside. However, PDMS is elastic and the thin membranes exhibit significant deformation and delamination under pressure which alters the architecture of the devices causing poor oxygenation or device failure. Therefore, an alternate membrane with high stability, low deformation under pressure, and high gas exchange was desired. In this paper, we present a novel composite membrane consisting of an ultra-thin stainless-steel mesh embedded in PDMS, designed specifically for a microfluidic single oxygenator unit (SOU). In comparison to homogeneous PDMS membranes, this composite membrane demonstrated high stability, low deformation under pressure, and high gas exchange. In addition, a new design for oxygenator with sloping profile and tapered inlet configuration has been introduced to achieve the same gas exchange at lower pressure drops. SOUs were tested by bovine blood to evaluate gas exchange properties. Among all tested SOUs, the flat design SOU with composite membrane has the highest oxygen exchange of 40.32 ml/min m2. The superior performance of the new device with composite membrane was demonstrated by constructing a lung assist device (LAD) with a low priming volume of 10 ml. The LAD was achieved by the oxygen uptake of 0.48-0.90 ml/min and the CO2 release of 1.05-2.27 ml/min at blood flow rates ranging between 8 and 48 ml/min. This LAD was shown to increase the oxygen saturation level by 25% at the low pressure drop of 29 mm Hg. Finally, a piglet was used to test the gas exchange capacity of the LAD in vivo. The animal experiment results were in accordance with in-vitro results, which shows that the LAD is capable of providing sufficient gas exchange at a blood flow rate of â¼24 ml/min.
RESUMO
During machining of stainless steels at low cutting -speeds, workpiece material tends to adhere to the cutting tool at the tool-chip interface, forming built-up edge (BUE). BUE has a great importance in machining processes; it can significantly modify the phenomenon in the cutting zone, directly affecting the workpiece surface integrity, cutting tool forces, and chip formation. The American Iron and Steel Institute (AISI) 304 stainless steel has a high tendency to form an unstable BUE, leading to deterioration of the surface quality. Therefore, it is necessary to understand the nature of the surface integrity induced during machining operations. Although many reports have been published on the effect of tool wear during machining of AISI 304 stainless steel on surface integrity, studies on the influence of the BUE phenomenon in the stable state of wear have not been investigated so far. The main goal of the present work is to investigate the close link between the BUE formation, surface integrity and cutting forces in the stable sate of wear for uncoated cutting tool during the cutting tests of AISI 304 stainless steel. The cutting parameters were chosen to induce BUE formation during machining. X-ray diffraction (XRD) method was used for measuring superficial residual stresses of the machined surface through the stable state of wear in the cutting and feed directions. In addition, surface roughness of the machined surface was investigated using the Alicona microscope and Scanning Electron Microscopy (SEM) was used to reveal the surface distortions created during the cutting process, combined with chip undersurface analyses. The investigated BUE formation during the stable state of wear showed that the BUE can cause a significant improvement in the surface integrity and cutting forces. Moreover, it can be used to compensate for tool wear through changing the tool geometry, leading to the protection of the cutting tool from wear.
RESUMO
Adaptive TiAlCrSiYN-based coatings show promise under the extreme tribological conditions of dry ultra-high-speed (500-700 m min-1) machining of hardened tool steels. During high speed machining, protective sapphire and mullite-like tribo-films form on the surface of TiAlCrSiYN-based coatings resulting in beneficial heat-redistribution in the cutting zone. XRD and HRTEM data show that the tribo-films act as a thermal barrier creating a strong thermal gradient. The data are consistent with the temperature decreasing from approximately 1100-1200 degrees C at the outer surface to approximately 600 degrees C at the tribo-film/coating interface. The mechanical properties of the multilayer TiAICrSiYN/TiA1CrN coating were measured by high temperature nanoindentation. It retains relatively high hardness (21 GPa) at 600 degrees C. The nanomechanical properties of the underlying coating layer provide a stable low wear environment for the tribo-films to form and regenerate so it can sustain high temperatures under operation (600 degrees C). This combination of characteristics explains the high wear resistance of the multilayer TiAlCrSiYN/TiAICrN coating under extreme operating conditions. TiAlCrSiYN and TiAlCrN monolayer coatings have a less effective combination of adaptability and mechanical characteristics and therefore lower tool life. The microstructural reasons for different optimum hardness and plasticity between monolayer and multilayer coatings are discussed.