Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 319(2): 140-5, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21453324

RESUMO

Reverse complementary DNA sequences - sequences that are inadvertently given backwards with all purines and pyrimidines transposed - can affect sequence analysis detrimentally unless taken into account. We present an open-source, high-throughput software tool -v-revcomp (http://www.cmde.science.ubc.ca/mohn/software.html) - to detect and reorient reverse complementary entries of the small-subunit rRNA (16S) gene from sequencing datasets, particularly from environmental sources. The software supports sequence lengths ranging from full length down to the short reads that are characteristic of next-generation sequencing technologies. We evaluated the reliability of v-revcomp by screening all 406 781 16S sequences deposited in release 102 of the curated SILVA database and demonstrated that the tool has a detection accuracy of virtually 100%. We subsequently used v-revcomp to analyse 1 171 646 16S sequences deposited in the International Nucleotide Sequence Databases and found that about 1% of these user-submitted sequences were reverse complementary. In addition, a nontrivial proportion of the entries were otherwise anomalous, including reverse complementary chimeras, sequences associated with wrong taxa, nonribosomal genes, sequences of poor quality or otherwise erroneous sequences without a reasonable match to any other entry in the database. Thus, v-revcomp is highly efficient in detecting and reorienting reverse complementary 16S sequences of almost any length and can be used to detect various sequence anomalies.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Bases de Dados de Ácidos Nucleicos , Microbiologia Ambiental , RNA Ribossômico 16S/genética , Software , Bactérias/genética , Filogenia , Alinhamento de Sequência
2.
PLoS One ; 6(9): e24940, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21949797

RESUMO

Sequence analysis of the ribosomal RNA operon, particularly the internal transcribed spacer (ITS) region, provides a powerful tool for identification of mycorrhizal fungi. The sequence data deposited in the International Nucleotide Sequence Databases (INSD) are, however, unfiltered for quality and are often poorly annotated with metadata. To detect chimeric and low-quality sequences and assign the ectomycorrhizal fungi to phylogenetic lineages, fungal ITS sequences were downloaded from INSD, aligned within family-level groups, and examined through phylogenetic analyses and BLAST searches. By combining the fungal sequence database UNITE and the annotation and search tool PlutoF, we also added metadata from the literature to these accessions. Altogether 35,632 sequences belonged to mycorrhizal fungi or originated from ericoid and orchid mycorrhizal roots. Of these sequences, 677 were considered chimeric and 2,174 of low read quality. Information detailing country of collection, geographical coordinates, interacting taxon and isolation source were supplemented to cover 78.0%, 33.0%, 41.7% and 96.4% of the sequences, respectively. These annotated sequences are publicly available via UNITE (http://unite.ut.ee/) for downstream biogeographic, ecological and taxonomic analyses. In European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena/), the annotated sequences have a special link-out to UNITE. We intend to expand the data annotation to additional genes and all taxonomic groups and functional guilds of fungi.


Assuntos
DNA Espaçador Ribossômico/genética , Bases de Dados de Ácidos Nucleicos , Geografia , Internet , Micorrizas/genética , Óperon de RNAr/genética , Ecologia , Cooperação Internacional , Raízes de Plantas/genética
3.
Mol Ecol Resour ; 10(6): 1076-81, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21565119

RESUMO

The internal transcribed spacer (ITS) region of the nuclear ribosomal repeat unit holds a central position in the pursuit of the taxonomic affiliation of fungi recovered through environmental sampling. Newly generated fungal ITS sequences are typically compared against the International Nucleotide Sequence Databases for a species or genus name using the sequence similarity software suite blast. Such searches are not without complications however, and one of them is the presence of chimeric entries among the query or reference sequences. Chimeras are artificial sequences, generated unintentionally during the polymerase chain reaction step, that feature sequence data from two (or possibly more) distinct species. Available software solutions for chimera control do not readily target the fungal ITS region, but the present study introduces a blast-based open source software package (available at http://www.emerencia.org/chimerachecker.html) to examine newly generated fungal ITS sequences for the presence of potentially chimeric elements in batch mode. We used the software package on a random set of 12 300 environmental fungal ITS sequences in the public sequence databases and found 1.5% of the entries to be chimeric at the ordinal level after manual verification of the results. The proportion of chimeras in the sequence databases can be hypothesized to increase as emerging sequencing technologies drawing from pooled DNA samples are becoming important tools in molecular ecology research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA