Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Eye Res ; 240: 109816, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309514

RESUMO

The ocular surface is subject to a range of potentially hazardous environmental factors and substances, owing to its anatomical location, sensitivity, and physiological makeup. Xenobiotic stress exerted by chronic pesticide exposure on the cornea is primarily responsible for ocular irritation, excessive tear production (hyper-lacrimation), corneal abrasions and decreased visual acuity. Traditional medicine hails the humble onion (Allium cepa) for its multi-faceted properties including but not limited to anti-microbial, antioxidant, anti-inflammatory and wound healing. However, there is a lacuna regarding its impact on the ocular surface. Thereby, the current study investigated whether topical application of crude extract of Allium cepa aided in mitigating pesticide-induced damage to the ocular surface. The deleterious effects of pesticide exposure and their mitigation through the topical application of herbal extract of Allium cepa were analysed initially through in vitro evaluation on cell lines and then on the ocular surface via various in-vivo and ex-vivo techniques. Pathophysiological alterations to the ocular surface that impacted vision were explored through detailed neurophysiological screening with special emphasis on visual acuity wherein it was observed that the murine group treated with topical application of Allium cepa extract had comparable visual capacity to the non-pesticide exposed group. Additionally, SOD2 was utilized as an oxidative stress marker along with the expression of cellular apoptotic markers such as Bcl-xL to analyse the impact of pesticide exposure and subsequent herbal intervention on oxidative stress-induced corneal damage. The impact on the corneal epithelial progenitor cell population (ABCG2 and TERT positive cells) was also flowcytometrically analysed. Therefore, from our observations, it can be postulated that the topical application of Allium cepa extract might serve as an effective strategy to alleviate pesticide exposure related ocular damage.


Assuntos
Cebolas , Praguicidas , Camundongos , Animais , Cebolas/fisiologia , Praguicidas/toxicidade , Córnea , Antioxidantes/farmacologia , Estresse Oxidativo
2.
Biotechnol Bioeng ; 121(3): 959-970, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38059432

RESUMO

The potential of bacteria-based immunotherapy lies in its ability to inherently enhance immune responses. However, the "liveness" of bacteria poses risks of bacterial escape, nonspecific immuno-stimulation, and ethical concerns, limiting their acceptability in immunotherapy. In this scenario, nonliving empty bacterial-cell envelopes, named bacterial ghosts (BGs), have emerged as immuno-stimulants with the potential to side-step the limitations of live bacterial therapies. This study demonstrates the capability of BGs in modulating the functionality of NK-92 cells and Caenorhabditis elegans (C. elegans), as well as perform as cytokine-therapy adjuvants. BGs were obtained through a pH-driven culture method, and were validated for their structural and chemical integrity via electron microscopy and spectroscopy. In NK-92 cells, BGs have shown significant immuno-stimulation by boosting the gene-expression of perforin, granzyme-B, Fas-L, and interferon-gamma by factors of 3.5-, 1.5-, 12.5-, and 8.6-folds, respectively. Combined BG and IL-12 treatment yielded a notable 10.2-fold increase in interferon-gamma protein expression in 24 h. The BGs also significantly influenced the innate immune response in C. elegans through the upregulation of lysozyme genes viz., ilys-3 (8.8-fold) and lys-2 (3.1-fold). Our investigation into the impact of BGs on natural killer cells and C. elegans highlights its potential as a valid alternative approach for new-age immunotherapy and cytokine augmentation.


Assuntos
Caenorhabditis elegans , Citocinas , Animais , Interferon gama , Bactérias , Células Matadoras Naturais
3.
Biomacromolecules ; 25(1): 77-88, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38048403

RESUMO

N-Nitrosamines are well established motifs to release nitric oxide (NO) under photoirradiation. Herein, a series of amphiphilic N-nitrosamine-based block copolymers (BCPx-NO) are developed to attain controlled NO release under photoirradiation (365 nm, 3.71 mW/cm2). The water-soluble BCPx-NO forms micellar architecture in aqueous medium and exhibits a sustained NO release of 92-160 µM within 11.5 h, which is 36.8-64.0% of the calculated value. To understand the NO release mechanism, a small molecular NO donor (NOD) resembling the NO releasing functional motif of BCPx-NO is synthesized, which displays a burst NO release in DMSO within 2.5 h. The radical nature of the released NO is confirmed by electron paramagnetic resonance (EPR) spectroscopy. The gradual NO release from micellar BCPx-NO enhances antibacterial activity over NOD and exhibits a superior bactericidal effect on Gram-positive Staphylococcus aureus. In relation to biomedical applications, this work offers a comprehensive insight into tuning light-triggered NO release to improve antibacterial activity.


Assuntos
Óxido Nítrico , Staphylococcus aureus , Óxido Nítrico/química , Polímeros/farmacologia , Micelas , Antibacterianos/farmacologia , Antibacterianos/química
4.
PLoS Pathog ; 17(7): e1009706, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34252168

RESUMO

Many viruses utilize the host endo-lysosomal network for infection. Tracing the endocytic itinerary of SARS-CoV-2 can provide insights into viral trafficking and aid in designing new therapeutic strategies. Here, we demonstrate that the receptor binding domain (RBD) of SARS-CoV-2 spike protein is internalized via the pH-dependent CLIC/GEEC (CG) endocytic pathway in human gastric-adenocarcinoma (AGS) cells expressing undetectable levels of ACE2. Ectopic expression of ACE2 (AGS-ACE2) results in RBD traffic via both CG and clathrin-mediated endocytosis. Endosomal acidification inhibitors like BafilomycinA1 and NH4Cl, which inhibit the CG pathway, reduce the uptake of RBD and impede Spike-pseudoviral infection in both AGS and AGS-ACE2 cells. The inhibition by BafilomycinA1 was found to be distinct from Chloroquine which neither affects RBD uptake nor alters endosomal pH, yet attenuates Spike-pseudovirus entry. By screening a subset of FDA-approved inhibitors for functionality similar to BafilomycinA1, we identified Niclosamide as a SARS-CoV-2 entry inhibitor. Further validation using a clinical isolate of SARS-CoV-2 in AGS-ACE2 and Vero cells confirmed its antiviral effect. We propose that Niclosamide, and other drugs which neutralize endosomal pH as well as inhibit the endocytic uptake, could provide broader applicability in subverting infection of viruses entering host cells via a pH-dependent endocytic pathway.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/virologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Internalização do Vírus/efeitos dos fármacos , Cloreto de Amônio/farmacologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/fisiologia , Animais , Antivirais/administração & dosagem , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Cloroquina/farmacologia , Clatrina/metabolismo , Sinergismo Farmacológico , Endocitose/efeitos dos fármacos , Endocitose/fisiologia , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Hidroxicloroquina/administração & dosagem , Macrolídeos/farmacologia , Niclosamida/administração & dosagem , Niclosamida/farmacologia , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/fisiologia , Células Vero
5.
Langmuir ; 37(5): 1788-1798, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33497235

RESUMO

A series of amphiphilic double-brush polymers based on itaconate diesters were synthesized with the objective of tailoring the thermal and mechanical properties of hydrogels formed by them; the amphiphilic itaconate diesters carried an MPEG350 segment and an alkyl chain, whose length was varied from C12 to C18. As was reported by us earlier (Macromolecules 2017, 50, 5004), the formation of the hydrogel was due to the crystallization of alkyl segments, as confirmed by the match of the rheological gel-to-sol transition with that of differential scanning calorimetry melting transition of the gel. In an effort to fine-tune the hydrogel-melting temperature and its strength, we varied the length of the alkyl chain length while keeping the hydrophilic segment length constant at MPEG350; apart from varying the alkyl chain length, an oxyethylene spacer was incorporated to examine the effect of decoupling the alkyl side-chain crystallization from the backbone. With these modifications, the melting temperature of the hydrogel was varied from 30 to 56 °C. Likewise, the strength of the hydrogel, as reflected by its storage modulus, varied from around 220 to 970 Pa; the softer gels typically exhibited a slightly larger critical shear strain beyond which the gel transformed into a sol. The thermal and shear-induced gel-to-sol transitions were reversible; however, the modulus after the shear-induced transition did not fully recover instantly (∼80%), suggesting that the formation of the extended gel network is slow. Further fine-tuning could be achieved by copolymerization of two different amphiphilic itaconate monomers, namely, those with C16 and C18, which provided an intermediate gel-melting temperature; however, co-gelation of the two preformed homopolymer gels yielded two distinct gel-melting transitions. Thus, this class of tuneable stimuli-responsive polymeric hydrogels prepared from biobenign components, namely, itaconic acid, 1-alkanols, and MPEGs, could serve as potential candidates for biomedical applications.

6.
Nanomedicine ; 33: 102351, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33418136

RESUMO

Acute respiratory distress syndrome (ARDS) is a deadly respiratory illness associated with refractory hypoxemia and pulmonary edema. The recent pandemic outbreak of COVID-19 is associated with severe pneumonia and inflammatory cytokine storm in the lungs. The anti-inflammatory phytomedicine nimbolide (NIM) may not be feasible for clinical translation due to poor pharmacokinetic properties and lack of suitable delivery systems. To overcome these barriers, we have developed nimbolide liposomes conjugated with iRGD peptide (iRGD-NIMLip) for targeting lung inflammation. It was observed that iRGD-NIMLip treatment significantly inhibited oxidative stress and cytokine storm compared to nimbolide free-drug (f-NIM), nimbolide liposomes (NIMLip), and exhibited superior activity compared to dexamethasone (DEX). iRGD-NIMLip abrogated the LPS induced p65 NF-κB, Akt, MAPK, Integrin ß3 and ß5, STAT3, and DNMT1 expression. Collectively, our results demonstrate that iRGD-NIMLip could be a promising novel drug delivery system to target severe pathological consequences observed in ARDS and COVID-19 associated cytokine storm.


Assuntos
Anti-Inflamatórios/administração & dosagem , Limoninas/administração & dosagem , Lipossomos/química , Oligopeptídeos/química , Síndrome do Desconforto Respiratório/tratamento farmacológico , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Linhagem Celular , Sistemas de Liberação de Medicamentos , Endotoxinas , Humanos , Limoninas/química , Limoninas/uso terapêutico , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/patologia
7.
Development ; 144(18): 3211-3223, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28807895

RESUMO

Brain regeneration in planarians is mediated by precise spatiotemporal control of gene expression and is crucial for multiple aspects of neurogenesis. However, the mechanisms underpinning the gene regulation essential for brain regeneration are largely unknown. Here, we investigated the role of the miR-124 family of microRNAs in planarian brain regeneration. The miR-124 family (miR-124) is highly conserved in animals and regulates neurogenesis by facilitating neural differentiation, yet its role in neural wiring and brain organization is not known. We developed a novel method for delivering anti-miRs using liposomes for the functional knockdown of microRNAs. Smed-miR-124 knockdown revealed a key role for these microRNAs in neuronal organization during planarian brain regeneration. Our results also demonstrated an essential role for miR-124 in the generation of eye progenitors. Additionally, miR-124 regulates Smed-slit-1, which encodes an axon guidance protein, either by targeting slit-1 mRNA or, potentially, by modulating the canonical Notch pathway. Together, our results reveal a role for miR-124 in regulating the regeneration of a functional brain and visual system.


Assuntos
Encéfalo/fisiologia , MicroRNAs/metabolismo , Planárias/genética , Planárias/fisiologia , Regeneração , Vias Visuais/fisiologia , Animais , Fenômenos Biofísicos , Gânglios dos Invertebrados/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Lipossomos/química , Fusão de Membrana , MicroRNAs/genética , Modelos Biológicos , Neurônios/metabolismo , Penetrância , Fenótipo , Receptores Notch/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais , Vírus/metabolismo
8.
Phys Chem Chem Phys ; 22(3): 1738-1746, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31898698

RESUMO

Cationic liposomes, a type of non-viral vectors, often play the important biological function of delivering nucleic acids during cell transfection. Variations in the molecular architecture of di-alkyl dihydroxy ethyl ammonium chloride-based cationic lipids involving hydrophobic tails have been found to influence their biological function in terms of cell transfection efficiency. For example, liposomes based on a cationic lipid (Lip1814) with asymmetry in the hydrophobic chains were found to display higher transfection efficacy in cultured mammalian cell lines than those comprising of symmetric Lip1818 or asymmetric Lip1810. The effect of variations in the molecular architecture of the cationic lipids on the biological activity of liposomes has been explored here via the photophysical studies of 8-anilino-1-naphthalenesulphonate (ANS) and Nile Red (NR) in three cationic liposomes, namely Lip1810, Lip1814 and Lip1818. Time-resolved fluorescence of ANS revealed reduced hydration at the lipid-water interface and enhanced relaxation dynamics of surface water (lipid headgroup bound water molecules) in Lip1810- and Lip1814-based liposomes in the presence of cholesterol. As the probe ANS failed to be incorporated into the lipid-water interface of Lip1818 due to the significantly high rigidity of these liposomes, no information concerning the extent of hydration of the lipid-water interface or the interfacial water dynamics could be obtained. Time-resolved polarization-gated anisotropy measurements of NR in the presence of cholesterol revealed the rigidity of the cationic liposomes to be increasing in the order of Lip1810 < Lip1814 < Lip1818. In the presence of cholesterol, moderately higher rigidity, reduced membrane hydration and enhanced relaxation dynamics of the interfacial water molecules gave rise to the superior cell transfection efficacy of Lip1814-based cationic liposomes than those of the highly flexible Lip1810 or the highly rigid Lip1818.


Assuntos
Lipídeos/química , Linhagem Celular , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Molecular , Transfecção
9.
J Interv Cardiol ; 31(5): 661-671, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29781182

RESUMO

BACKGROUND: Bioprosthetic (BP) valves have been increasingly used for aortic valve replacement over the last decade. Due to their limited durability, patients presenting with failed BP valves are rising. Valve in Valve - Transcatheter Aortic Valve Implantation (ViV-TAVI) emerged as an alternative to the gold standard redo-Surgical Aortic Valve Replacement (redo-SAVR). However, the utility of ViV-TAVI is poorly understood. METHODS: A systematic electronic search of the scientific literature was done in PubMed, EMBASE, SCOPUS, Google Scholar, and ClinicalTrials.gov. Only studies which compared the safety and efficacy of ViV-TAVI and redo-SAVR head to head in failed BP valves were included. RESULTS: Six observational studies were eligible and included 594 patients, of whom 255 underwent ViV- TAVI and 339 underwent redo-SAVR. There was no significant difference between ViV-TAVI and redo- SAVR for procedural, 30 day and 1 year mortality rates. ViV-TAVI was associated with lower risk of permanent pacemaker implantation (PPI) (OR: 0.43, CI: 0.21-0.89; P = 0.02) and a trend toward increased risk of paravalvular leak (PVL) (OR: 5.45, CI: 0.94-31.58; P = 0.06). There was no significant difference for stroke, major bleeding, vascular complications and postprocedural aortic valvular gradients more than 20 mm-hg. CONCLUSION: Our results reiterate the safety and feasibility of ViV-TAVI for failed aortic BP valves in patients deemed to be at high risk for surgery. VIV-TAVI was associated with lower risk of permanent pacemaker implantation with a trend toward increased risk of paravalvular leak.


Assuntos
Estenose da Valva Aórtica/cirurgia , Implante de Prótese de Valva Cardíaca , Complicações Pós-Operatórias , Substituição da Valva Aórtica Transcateter , Valva Aórtica/cirurgia , Implante de Prótese de Valva Cardíaca/efeitos adversos , Implante de Prótese de Valva Cardíaca/instrumentação , Implante de Prótese de Valva Cardíaca/métodos , Humanos , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/terapia , Desenho de Prótese , Substituição da Valva Aórtica Transcateter/efeitos adversos , Substituição da Valva Aórtica Transcateter/instrumentação , Substituição da Valva Aórtica Transcateter/métodos , Resultado do Tratamento
10.
Acta Radiol ; 59(9): 1074-1081, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29378421

RESUMO

Background Non-invasive monitoring of autologous vein graft (VG) bypass grafts is largely limited to detecting late luminal narrowing. Although magnetic resonance imaging (MRI) delineates vein graft intima, media, and adventitia, which may detect early failure, the scan time required to achieve sufficient resolution is at present impractical. Purpose To study VG visualization enhancement in vivo and delineate whether a covalently attached MRI contrast agent would enable quicker longitudinal imaging of the VG wall. Material and Methods Sixteen 12-week-old male C57BL/6J mice underwent carotid interposition vein grafting. The inferior vena cava of nine donor mice was treated with a gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA)-based contrast agent, with control VGs labeled with a vehicle. T1-weighted (T1W) MRI was performed serially at postoperative weeks 1, 4, 12, and 20. A portion of animals was sacrificed for histopathology following each imaging time point. Results MRI signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were significantly higher for treated VGs in the first three time points (1.73 × higher SNR, P = 0.0006, and 5.83 × higher CNR at the first time point, P = 0.0006). However, MRI signal enhancement decreased consistently in the study period, to 1.29 × higher SNR and 2.64 × higher CNR, by the final time point. There were no apparent differences in graft morphometric analyses in Masson's trichrome-stained sections. Conclusion A MRI contrast agent that binds covalently to the VG wall provides significant increase in T1W MRI signal with no observed adverse effects in a mouse model. Further optimization of the contrast agent to enhance its durability is required.


Assuntos
Implante de Prótese Vascular/métodos , Artérias Carótidas/cirurgia , Meios de Contraste/farmacologia , Gadolínio DTPA/farmacologia , Veia Cava Inferior/transplante , Animais , Modelos Animais de Doenças , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Razão Sinal-Ruído
11.
Acc Chem Res ; 49(9): 1671-80, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27552443

RESUMO

The allure of integrating the tunable properties of soft nanomaterials with the unique optical and electronic properties of metal nanoparticles has led to the development of organic-inorganic hybrid nanomaterials. A promising method for the synthesis of such organic-inorganic hybrid nanomaterials is afforded by the in situ generation of metal nanoparticles within a host organic template. Due to their tunable surface morphology and porosity, soft organic materials such as gels, liquid crystals, and polymers that are derived from various synthetic or natural compounds can act as templates for the synthesis of metal nanoparticles of different shapes and sizes. This method provides stabilization to the metal nanoparticles by the organic soft material and advantageously precludes the use of external reducing or capping agents in many instances. In this Account, we exemplify the green chemistry approach for synthesizing these materials, both in the choice of gelators as soft material frameworks and in the reduction mechanisms that generate the metal nanoparticles. Established herein is the core design principle centered on conceiving multifaceted amphiphilic soft materials that possess the ability to self-assemble and reduce metal ions into nanoparticles. Furthermore, these soft materials stabilize the in situ generated metal nanoparticles and retain their self-assembly ability to generate metal nanoparticle embedded homogeneous organic-inorganic hybrid materials. We discuss a remarkable example of vegetable-based drying oils as host templates for metal ions, resulting in the synthesis of novel hybrid nanomaterials. The synthesis of metal nanoparticles via polymers and self-assembled materials fabricated via cardanol (a bioorganic monomer derived from cashew nut shell liquid) are also explored in this Account. The organic-inorganic hybrid structures were characterized by several techniques such as UV-visible spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Utilization of silver nanoparticle-based hybrid nanomaterials as an antimicrobial material is another illustration of the advantage of hybrid nanomaterials. We envision that the results summarized in this Account will help the scientific community to design and develop diverse organic-inorganic hybrid materials using environmentally benign methods and that these materials will yield advanced properties that have multifaceted applications in various research fields.

12.
Chem Soc Rev ; 42(2): 427-38, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23114456

RESUMO

This tutorial review could serve as an introduction of cardanol into the world of soft nanomaterials; it is a biobased lipid-mixture obtained from the plant Anacardium occidentale L. Cardanol is a renewable raw material derived from a byproduct of cashew nut processing industry: Cashew Nut Shell Liquid (CNSL). Cardanol is a rich mixture of non-isoprenoic phenolic compounds that is a valuable raw material for generating a variety of soft nanomaterials such as nanotubes, nanofibers, gels and surfactants. These nanostructures may then serve as templates for the synthesis of additional nanomaterials. The wealth and diversity of cardanol-derived functional nanomaterials has urged us to present an article that will give readers a taste of a new class of cardanol-derived functional amphiphiles, along with their ability to generate hierarchical functional nanomaterials through non-covalent soft-chemical routes. In this concise review, we discuss selected examples of novel biobased surfactants, glycolipids, and polymers derived from cardanol, and their subsequent self-assembly into functional soft materials.


Assuntos
Anacardium/química , Nanoestruturas/química , Nozes/química , Fenóis/química , Géis/química , Cristais Líquidos/química , Nanoestruturas/ultraestrutura , Tensoativos/química
13.
J Biosci ; 492024.
Artigo em Inglês | MEDLINE | ID: mdl-38864238

RESUMO

Immunotherapy is a promising and safer alternative to conventional cancer therapies. It involves adaptive T-cell therapy, cancer vaccines, monoclonal antibodies, immune checkpoint blockade (ICB), and chimeric antigen receptor (CAR) based therapies. However, most of these modalities encounter restrictions in solid tumours owing to a dense, highly hypoxic and immune-suppressive microenvironment as well as the heterogeneity of tumour antigens. The elevated intra-tumoural pressure and mutational rates within fastgrowing solid tumours present challenges in efficient drug targeting and delivery. The tumour microenvironment is a dynamic niche infiltrated by a variety of immune cells, most of which are macrophages. Since they form a part of the innate immune system, targeting macrophages has become a plausible immunotherapeutic approach. In this review, we discuss several versatile approaches (both at pre-clinical and clinical stages) such as the direct killing of tumour-associated macrophages, reprogramming pro-tumour macrophages to anti-tumour phenotypes, inhibition of macrophage recruitment into the tumour microenvironment, novel CAR macrophages, and genetically engineered macrophages that have been devised thus far. These strategies comprise a strong and adaptable macrophage-toolkit in the ongoing fight against cancer and by understanding their significance, we may unlock the full potential of these immune cells in cancer therapy.


Assuntos
Imunidade Inata , Imunoterapia , Macrófagos , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Microambiente Tumoral/imunologia , Imunoterapia/métodos , Macrófagos/imunologia , Macrófagos Associados a Tumor/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Animais
14.
Nat Commun ; 15(1): 4844, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844466

RESUMO

Farmers from South Asian countries spray insecticides without protective gear, which leads to insecticide exposure through dermal and nasal routes. Acetylcholinesterase plays a crucial role in controlling neuromuscular function. Organophosphate and carbamate insecticides inhibit acetylcholinesterase, which leads to severe neuronal/cognitive dysfunction, breathing disorders, loss of endurance, and death. To address this issue, an Oxime-fabric is developed by covalently attaching silyl-pralidoxime to the cellulose of the fabric. The Oxime-fabric, when stitched as a bodysuit and facemask, efficiently deactivates insecticides (organophosphates and carbamates) upon contact, preventing exposure. The Oxime-fabric prevents insecticide-induced neuronal damage, neuro-muscular dysfunction, and loss of endurance. Furthermore, we observe a 100% survival rate in rats when repeatedly exposed to organophosphate-insecticide through the Oxime-fabric, while no survival is seen when organophosphate-insecticide applied directly or through normal fabric. The Oxime-fabric is washable and reusable for at least 50 cycles, providing an affordable solution to prevent insecticide-induced toxicity and lethality among farmers.


Assuntos
Inseticidas , Oximas , Animais , Inseticidas/toxicidade , Ratos , Oximas/administração & dosagem , Oximas/farmacologia , Masculino , Compostos de Pralidoxima/farmacologia , Compostos de Pralidoxima/administração & dosagem , Têxteis , Inibidores da Colinesterase/administração & dosagem , Inibidores da Colinesterase/toxicidade , Acetilcolinesterase/metabolismo , Exposição Ocupacional/prevenção & controle , Exposição Ocupacional/efeitos adversos , Carbamatos/farmacologia , Carbamatos/administração & dosagem , Organofosfatos/toxicidade , Administração Intranasal
15.
Blood ; 118(25): e184-91, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22034631

RESUMO

One of the greatest challenges in cell therapy is to minimally invasively deliver a large quantity of viable cells to a tissue of interest with high engraftment efficiency. Low and inefficient homing of systemically delivered mesenchymal stem cells (MSCs), for example, is thought to be a major limitation of existing MSC-based therapeutic approaches, caused predominantly by inadequate expression of cell surface adhesion receptors. Using a platform approach that preserves the MSC phenotype and does not require genetic manipulation, we modified the surface of MSCs with a nanometer-scale polymer construct containing sialyl Lewis(x) (sLe(x)) that is found on the surface of leukocytes and mediates cell rolling within inflamed tissue. The sLe(x) engineered MSCs exhibited a robust rolling response on inflamed endothelium in vivo and homed to inflamed tissue with higher efficiency compared with native MSCs. The modular approach described herein offers a simple method to potentially target any cell type to specific tissues via the circulation.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Oligossacarídeos/química , Animais , Adesão Celular , Diferenciação Celular , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Quimiocina CXCL12/metabolismo , Dinoprostona/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Células HL-60 , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Integrina beta1/metabolismo , Células-Tronco Mesenquimais/química , Camundongos , Camundongos Endogâmicos BALB C , Selectinas/metabolismo , Antígeno Sialil Lewis X , Antígenos Thy-1/metabolismo , Transplante Heterólogo
16.
Drug Dev Ind Pharm ; 39(12): 1928-35, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22762132

RESUMO

CONTEXT: One among many strategies to prolong gastric residence time and improve local effect of the metronidazole in stomach to eradicate Helicobacter pylori in the treatment of peptic ulcer was floating drug delivery system particularly effervescent gastroretentive tablets. OBJECTIVE: The objective of this study was to prepare and evaluate, effervescent floating drug delivery system of a model drug, metronidazole. METHODS: Effervescent floating drug delivery tablets were prepared by wet granulation method. A three-factor, three levels Box-Behnken design was adopted for the optimization. The selected independent variables were amount of hydroxypropyl methylcellulose K 15M (X1), sodium carboxy methylcellulose (X2) and NaHCO3 (X3). The dependent variables were floating lag time (YFLT), cumulative percentage of metronidazole released at 6th h (Y6) and cumulative percentage of metronidazole released at 12th h (Y12). Physical properties, drug content, in vitro floating lag time, total floating time and drug release behavior were assessed. RESULTS: YFLT range was found to be from 1.02 to 12.07 min. The ranges of other responses, Y6 and Y12 were 25.72 ± 2.85 to 77.14 ± 3.42 % and 65.47 ± 1.25 to 99.65 ± 2.28 %, respectively. Stability studies revealed that no significant change in in vitro floating lag time, total floating time and drug release behavior before and after storage. CONCLUSION: It can be concluded that a combination of hydroxypropyl methylcellulose K 15M, sodium carboxy methylcellulose and NaHCO3 can be used to increase the gastric residence time of the dosage form to improve local effect of metronidazole.


Assuntos
Anti-Infecciosos/administração & dosagem , Sistemas de Liberação de Medicamentos , Excipientes/química , Metronidazol/administração & dosagem , Anti-Infecciosos/química , Carboximetilcelulose Sódica/química , Química Farmacêutica , Composição de Medicamentos/métodos , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Derivados da Hipromelose , Metilcelulose/análogos & derivados , Metilcelulose/química , Metronidazol/química , Bicarbonato de Sódio/química , Fatores de Tempo
17.
Nano Lett ; 12(8): 4131-9, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22769232

RESUMO

Monitoring the location, distribution and long-term engraftment of administered cells is critical for demonstrating the success of a cell therapy. Among available imaging-based cell tracking tools, magnetic resonance imaging (MRI) is advantageous due to its noninvasiveness, deep penetration, and high spatial resolution. While tracking cells in preclinical models via internalized MRI contrast agents (iron oxide nanoparticles, IO-NPs) is a widely used method, IO-NPs suffer from low iron content per particle, low uptake in nonphagocytotic cell types (e.g., mesenchymal stem cells, MSCs), weak negative contrast, and decreased MRI signal due to cell proliferation and cellular exocytosis. Herein, we demonstrate that internalization of IO-NP (10 nm) loaded biodegradable poly(lactide-co-glycolide) microparticles (IO/PLGA-MPs, 0.4-3 µm) in MSCs enhances MR parameters such as the r(2) relaxivity (5-fold), residence time inside the cells (3-fold) and R(2) signal (2-fold) compared to IO-NPs alone. Intriguingly, in vitro and in vivo experiments demonstrate that internalization of IO/PLGA-MPs in MSCs does not compromise inherent cell properties such as viability, proliferation, migration and their ability to home to sites of inflammation.


Assuntos
Compostos Férricos/química , Imageamento por Ressonância Magnética/métodos , Células-Tronco Mesenquimais/química , Nanopartículas/química , Poliglactina 910/química , Animais , Proliferação de Células , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Propriedades de Superfície
18.
Int J Pharm ; 642: 123184, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37379893

RESUMO

Arthritis is an inflammatory disorder that leads to degeneration and swelling in the joints thereby severely affecting mobility. Till date, a complete cure for this disorder remains elusive. Administration of disease modifying anti-rheumatic drugs has not proved effective owing to poor retention of drugs at the site of inflammation in the joints. In most cases, lack of adherence to the therapeutic regimen further aggravates the condition. Localized administration of the drugs through intra-articular injections is highly invasive and painful. A possible solution to overcome these issues will be to ensure sustained release of the anti-arthritic drug at the site of inflammation through a minimally invasive method. The present work focuses on the development of a microneedle patch for localized and minimally invasive delivery of methotrexate to arthritic joints in guinea pig model. The microneedle patch was found to elicit minimal immune response and ensured sustained release of the drug that was manifested through faster restoration of mobility and a distinct reduction in inflammatory and rheumatoid markers at the joints when compared to untreated and those treated through conventional hypodermic injections. Our results demonstrate the promise of microneedle-based platform for an effective arthritic therapy.


Assuntos
Antirreumáticos , Artrite Reumatoide , Animais , Cobaias , Metotrexato , Preparações de Ação Retardada/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Inflamação/tratamento farmacológico
19.
Int J Pharm ; 632: 122546, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36574913

RESUMO

Hollow microneedle arrays (HMNs) are an excellent choice for managing chronic diseases requiring the administration of multiple drug doses over a prolonged duration. However, HMNs have gained partial success due to limitations in their manufacturing capabilities, and cumbersome processes. In the present study, polymeric HMNs were fabricated using a novel single-step drop-casting process without needing cleanroom facilities, and sophisticated instrumentation. When drop casted on the pyramidal tip stainless steel needles, the optimized polymer solution allowed the reproducible formation of desired height HMMs on a detachable acrylic base. To enable broader applications, the base with HMNs was integrated into an experimental package built to deliver a dose of âˆ¼ 5 µL per 30° clockwise rotation of the actuator, allowing multiple metered drug dose administrations. The fabricated HMNs were optically imaged, and tested for mechanical integrity and stability. The working and functional utility of the HMNs package in delivering metered drug doses was demonstrated by delivering vitamin B12 (ex vivo) and insulin (in vivo), respectively. The optimized process can be used for the large-scale manufacturing of HMNs and the experimental package shows the potential to be further developed into a wearable device.


Assuntos
Sistemas de Liberação de Medicamentos , Insulina , Administração Cutânea , Microinjeções , Sistemas de Liberação de Medicamentos/métodos , Agulhas , Polímeros
20.
Adv Healthc Mater ; 12(20): e2203104, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36972409

RESUMO

In recent years, the development of hyaluronic acid or hyaluronan (HA) based scaffolds, medical devices, bioconjugate systems have expanded into a broad range of research and clinical applications. Research findings over the last two decades suggest that the abundance of HA in most mammalian tissues with distinctive biological roles and chemical simplicity for modifications have made it an attractive material with a rapidly growing global market. Besides its use as native forms, HA has received much interest on so-called "HA-bioconjugates" and "modified-HA systems". In this review, the importance of chemical modifications of HA, underlying rationale approaches, and various advancements of bioconjugate derivatives with their potential physicochemical, and pharmacological advantages are summarized. This review also highlights the current and emerging HA-based conjugates of small molecules, macromolecules, crosslinked systems, and surface coating strategies with their biological implications, including their potentials and key challenges discussed in detail.


Assuntos
Receptores de Hialuronatos , Ácido Hialurônico , Animais , Ácido Hialurônico/química , Substâncias Macromoleculares , Receptores de Hialuronatos/química , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA