Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Plant Cell ; 24(6): 2596-609, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22706287

RESUMO

Reversible protein phosphorylation plays a major role in the acclimation of the photosynthetic apparatus to changes in light. Two paralogous kinases phosphorylate subsets of thylakoid membrane proteins. STATE TRANSITION7 (STN7) phosphorylates LHCII, the light-harvesting antenna of photosystem II (PSII), to balance the activity of the two photosystems through state transitions. STN8, which is mainly involved in phosphorylation of PSII core subunits, influences folding of the thylakoid membranes and repair of PSII after photodamage. The rapid reversibility of these acclimatory responses requires the action of protein phosphatases. In a reverse genetic screen, we identified the chloroplast PP2C phosphatase, PHOTOSYSTEM II CORE PHOSPHATASE (PBCP), which is required for efficient dephosphorylation of PSII proteins. Its targets, identified by immunoblotting and mass spectrometry, largely coincide with those of the kinase STN8. The recombinant phosphatase is active in vitro on a synthetic substrate or on isolated thylakoids. Thylakoid folding is affected in the absence of PBCP, while its overexpression alters the kinetics of state transitions. PBCP and STN8 form an antagonistic kinase and phosphatase pair whose substrate specificity and physiological functions are distinct from those of STN7 and the counteracting phosphatase PROTEIN PHOSPHATASE1/THYLAKOID-ASSOCIATED PHOSPHATASE38, but their activities may overlap to some degree.


Assuntos
Aclimatação , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Dados de Sequência Molecular , Mutação , Fosfoproteínas Fosfatases/genética , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteína Fosfatase 2C , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas das Membranas dos Tilacoides/genética , Proteínas das Membranas dos Tilacoides/metabolismo
2.
Physiol Plant ; 154(3): 433-46, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25402197

RESUMO

From individual localization and large-scale proteomic studies, we know that stroma-exposed thylakoid membranes harbor part of the machinery performing the light-dependent photosynthetic reactions. The minor components of the stroma thylakoid proteome, regulating and maintaining the photosynthetic machinery, are in the process of being unraveled. In this study, we developed in-solution and in-gel proteolytic digestion methods, and used them to identify minor membrane proteins, e.g. transporters, in stroma thylakoids prepared from Arabidopsis thaliana (L.) Heynh Columbia-0 leaves. In-solution digestion with chymotrypsin yielded the largest number of peptides, but in combination with methanol extraction resulted in identification of the largest number of membrane proteins. Although less efficient in extracting peptides, in-gel digestion with trypsin and chymotrypsin led to identification of additional proteins. We identified a total of 58 proteins including 44 membrane proteins. Almost half are known thylakoid proteins with roles in photosynthetic light reactions, proteolysis and import. The other half, including many transporters, are not known as chloroplast proteins, because they have been either curated (manually assigned) to other cellular compartments or not curated at all at the plastid protein databases. Transporters include ATP-binding cassette (ABC) proteins, transporters for K(+) and other cations. Other proteins either have a role in processes probably linked to photosynthesis, namely translation, metabolism, stress and signaling or are contaminants. Our results indicate that all these proteins are present in stroma thylakoids; however, individual studies are required to validate their location and putative roles. This study also provides strategies complementary to traditional methods for identification of membrane proteins from other cellular compartments.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Proteínas de Membrana/metabolismo , Proteoma/metabolismo , Tilacoides/metabolismo , Sequência de Aminoácidos , Western Blotting , Cromatografia Líquida , Quimotripsina/metabolismo , Dados de Sequência Molecular , Peptídeos/metabolismo , Proteólise , Proteoma/classificação , Proteômica/métodos , Espectrometria de Massas em Tandem , Tripsina/metabolismo
3.
Proc Natl Acad Sci U S A ; 107(10): 4782-7, 2010 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-20176943

RESUMO

The ability of plants to adapt to changing light conditions depends on a protein kinase network in the chloroplast that leads to the reversible phosphorylation of key proteins in the photosynthetic membrane. Phosphorylation regulates, in a process called state transition, a profound reorganization of the electron transfer chain and remodeling of the thylakoid membranes. Phosphorylation governs the association of the mobile part of the light-harvesting antenna LHCII with either photosystem I or photosystem II. Recent work has identified the redox-regulated protein kinase STN7 as a major actor in state transitions, but the nature of the corresponding phosphatases remained unknown. Here we identify a phosphatase of Arabidopsis thaliana, called PPH1, which is specifically required for the dephosphorylation of light-harvesting complex II (LHCII). We show that this single phosphatase is largely responsible for the dephosphorylation of Lhcb1 and Lhcb2 but not of the photosystem II core proteins. PPH1, which belongs to the family of monomeric PP2C type phosphatases, is a chloroplast protein and is mainly associated with the stroma lamellae of the thylakoid membranes. We demonstrate that loss of PPH1 leads to an increase in the antenna size of photosystem I and to a strong impairment of state transitions. Thus phosphorylation and dephosphorylation of LHCII appear to be specifically mediated by the kinase/phosphatase pair STN7 and PPH1. These two proteins emerge as key players in the adaptation of the photosynthetic apparatus to changes in light quality and quantity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Cloroplastos/metabolismo , Transporte de Elétrons , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Immunoblotting , Microscopia Confocal , Mutação , Fosfoproteínas Fosfatases/classificação , Fosfoproteínas Fosfatases/genética , Fosforilação , Complexo de Proteína do Fotossistema II/genética , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Fluorescência , Tilacoides/metabolismo
4.
Proteomics ; 12(18): 2852-61, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22833285

RESUMO

In C4 plants, such as maize, the photosynthetic apparatus is partitioned over two cell types called mesophyll (M) and bundle sheath (BS), which have different structure and specialization of the photosynthetic thylakoid membranes. We characterized protein phosphorylation in thylakoids of the two cell types from maize grown under either low or high light. Western blotting with phosphothreonine antibodies and ProQ phosphostaining detected light-dependent changes in the protein phosphorylation patterns. LC-MS/MS with alternating CID and electron transfer dissociation sequencing of peptide ions mapped 15 protein phosphorylation sites. Phosphorylated D2, CP29, CP26, Lhcb2 proteins, and ATPsynthase were found only in M membranes. A previously unknown phosphorylation site was mapped in phosphoenolpyruvate carboxykinase from the BS cells. Phosphorylation stoichiometry was calculated from the ratios of normalized ion currents for phosphorylated to nonphosphorylated peptide pairs from the D1, D2, CP43, and PbsH proteins of photosystem II (PSII). Every PSII in M thylakoids contained on average 1.5 ± 0.1 or 2.3 ± 0.2 phosphoryl groups in plants grown under either low or high light, while in BS membranes the corresponding numbers were 0.25 ± 0.1 or 0.7 ± 0.2, respectively. It is suggested that the phosphorylation level, as well as turnover of PSII depend on the structure of thylakoids.


Assuntos
Fosfoproteínas/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/metabolismo , Tilacoides/metabolismo , Zea mays/metabolismo , Sequência de Aminoácidos , Cloroplastos/metabolismo , Dados de Sequência Molecular , Fosfoproteínas/análise , Fosforilação , Complexo de Proteína do Fotossistema II/análise , Proteínas de Plantas/análise , Proteômica
5.
Plant Cell ; 21(12): 3950-64, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20028840

RESUMO

Photosynthetic thylakoid membranes in plants contain highly folded membrane layers enriched in photosystem II, which uses light energy to oxidize water and produce oxygen. The sunlight also causes quantitative phosphorylation of major photosystem II proteins. Analysis of the Arabidopsis thaliana stn7xstn8 double mutant deficient in thylakoid protein kinases STN7 and STN8 revealed light-independent phosphorylation of PsbH protein and greatly reduced N-terminal phosphorylation of D2 protein. The stn7xstn8 and stn8 mutants deficient in light-induced phosphorylation of photosystem II had increased thylakoid membrane folding compared with wild-type and stn7 plants. Significant enhancement in the size of stacked thylakoid membranes in stn7xstn8 and stn8 accelerated gravity-driven sedimentation of isolated thylakoids and was observed directly in plant leaves by transmission electron microscopy. Increased membrane folding, caused by the loss of light-induced protein phosphorylation, obstructed lateral migration of the photosystem II reaction center protein D1 and of processing protease FtsH between the stacked and unstacked membrane domains, suppressing turnover of damaged D1 in the leaves exposed to high light. These findings show that the high level of photosystem II phosphorylation in plants is required for adjustment of macroscopic folding of large photosynthetic membranes modulating lateral mobility of membrane proteins and sustained photosynthetic activity.


Assuntos
Arabidopsis/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/ultraestrutura , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Luz , Microscopia Eletrônica de Transmissão , Mutação , Fosforilação , Dobramento de Proteína , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Tilacoides/metabolismo
6.
Mol Cell Proteomics ; 9(6): 1281-95, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20124224

RESUMO

Photosynthetic organisms are able to adapt to changes in light conditions by balancing the light excitation energy between the light-harvesting systems of photosystem (PS) II and photosystem I to optimize the photosynthetic yield. A key component in this process, called state transitions, is the chloroplast protein kinase Stt7/STN7, which senses the redox state of the plastoquinone pool. Upon preferential excitation of photosystem II, this kinase is activated through the cytochrome b(6)f complex and required for the phosphorylation of the light-harvesting system of photosystem II, a portion of which migrates to photosystem I (state 2). Preferential excitation of photosystem I leads to the inactivation of the kinase and to dephosphorylation of light-harvesting complex (LHC) II and its return to photosystem II (state 1). Here we compared the thylakoid phosphoproteome of the wild-type strain and the stt7 mutant of Chlamydomonas under state 1 and state 2 conditions. This analysis revealed that under state 2 conditions several Stt7-dependent phosphorylations of specific Thr residues occur in Lhcbm1/Lhcbm10, Lhcbm4/Lhcbm6/Lhcbm8/Lhcbm9, Lhcbm3, Lhcbm5, and CP29 located at the interface between PSII and its light-harvesting system. Among the two phosphorylation sites detected specifically in CP29 under state 2, one is Stt7-dependent. This phosphorylation may play a crucial role in the dissociation of CP29 from PSII and/or in its association to PSI where it serves as a docking site for LHCII in state 2. Moreover, Stt7 was required for the phosphorylation of the thylakoid protein kinase Stl1 under state 2 conditions, suggesting the existence of a thylakoid protein kinase cascade. Stt7 itself is phosphorylated at Ser(533) in state 2, but analysis of mutants with a S533A/D change indicated that this phosphorylation is not required for state transitions. Moreover, we also identified phosphorylation sites that are redox (state 2)-dependent but independent of Stt7 and additional phosphorylation sites that are redox-independent.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/enzimologia , Proteínas Quinases/metabolismo , Proteínas de Algas/química , Sequência de Aminoácidos , Espectrometria de Massas , Dados de Sequência Molecular , Mutação/genética , Oxirredução , Peptídeos/química , Peptídeos/metabolismo , Fosforilação , Fosfosserina/metabolismo , Proteínas Quinases/química , Alinhamento de Sequência , Análise de Sequência de Proteína , Especificidade por Substrato , Tilacoides/enzimologia
7.
Biochemistry ; 48(2): 499-509, 2009 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-19113838

RESUMO

Thylakoid-soluble phosphoprotein of 9 kDa, TSP9, is an intrinsically unstructured plant-specific protein [Song, J., et al. (2006) Biochemistry 45, 15633-15643] with unknown function but established associations with light-harvesting proteins and peripheries of both photosystems [Hansson, M., et al. (2007) J. Biol. Chem. 282, 16214-16222]. To investigate the function of this protein, we used a combination of reverse genetics and biochemical and fluorescence measurement methods in Arabidopsis thaliana. Differential gene expression analysis of plants with a T-DNA insertion in the TSP9 gene using an array of 24000 Arabidopsis genes revealed disappearance of high light-dependent induction of a specific set of mostly signaling and unknown proteins. TSP9-deficient plants had reduced levels of in vivo phosphorylation of light-harvesting complex II polypeptides. Recombinant TSP9 was phosphorylated in light by thylakoid membranes isolated from the wild-type and mutant plants lacking STN8 protein kinase but not by the thylakoids deficient in STN7 kinase, essential for photosynthetic state transitions. TSP9-lacking mutant and RNAi plants with downregulation of TSP9 showed reduced ability to perform state transitions. The nonphotochemical quenching of chlorophyll fluorescence at high light intensities was also less efficient in the mutant compared to wild-type plants. Blue native electrophoresis of thylakoid membrane protein complexes revealed that TSP9 deficiency increased relative stability of photosystem II dimers and supercomplexes. It is concluded that TSP9 regulates plant light harvesting acting as a membrane-binding protein facilitating dissociation of light-harvesting proteins from photosystem II.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Complexos de Proteínas Captadores de Luz/metabolismo , Fosfoproteínas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Hidroponia , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/genética , Peso Molecular , Fosfoproteínas/química , Fosfoproteínas/genética , Fosforilação , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tilacoides/química , Tilacoides/genética , Tilacoides/metabolismo
8.
Plant J ; 55(4): 639-51, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18445132

RESUMO

SUMMARY: AtCYP38 is a thylakoid lumen protein comprising the immunophilin domain and the phosphatase inhibitor module. Here we show the association of AtCYP38 with the photosystem II (PSII) monomer complex and address its functional role using AtCYP38-deficient mutants. The dynamic greening process of etiolated leaves failed in the absence of AtCYP38, due to specific problems in the biogenesis of PSII complexes. Also the development of leaves under short-day conditions was severely disturbed. Detailed biophysical and biochemical analysis of mature AtCYP38-deficient plants from favorable growth conditions (long photoperiod) revealed: (i) intrinsic malfunction of PSII, which (ii) occurred on the donor side of PSII and (iii) was dependent on growing light intensity. AtCYP38 mutant plants also showed decreased accumulation of PSII, which was shown not to originate from impaired D1 synthesis or assembly of PSII monomers, dimers and supercomplexes as such but rather from the incorrect fine-tuning of the oxygen-evolving side of PSII. This, in turn, rendered PSII centers extremely susceptible to photoinhibition. AtCYP38 deficiency also drastically decreased the in vivo phosphorylation of PSII core proteins, probably related to the absence of the AtCYP38 phosphatase inhibitor domain. It is proposed that during PSII assembly AtCYP38 protein guides the proper folding of D1 (and CP43) into PSII, thereby enabling the correct assembly of the water-splitting Mn(4)-Ca cluster even with high turnover of PSII.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Ciclofilinas/metabolismo , Complexo de Proteína do Fotossistema II/fisiologia , Tilacoides/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ciclofilinas/deficiência , Ciclofilinas/genética , Escuridão , Variação Genética , Cinética , Luz , Metionina/metabolismo , Biogênese de Organelas , Fenótipo , Fotossíntese , Folhas de Planta/fisiologia
9.
Plant Cell Physiol ; 50(10): 1801-14, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19717822

RESUMO

Chloroplast thylakoid lumen of Arabidopsis thaliana contains 16 immunophilins, five cyclophilins and 11 FK506-binding proteins (FKBPs), which are considered protein folding catalysts, although only two of them, AtFKBP13 and AtCYP20-2, possess peptidyl-prolyl cis/trans isomerase (PPIase) activity. To address the question of the physiological significance of this activity, we obtained and characterized Arabidopsis mutants deficient in the most active PPIase, AtFKBP13, and a double mutant deficient in both AtFKBP13 and AtCYP20-2. Two-dimensional gel electrophoresis of isolated thylakoid lumen, as well as immunoblotting analyses of major photosynthetic membrane protein complexes did not reveal differences in protein composition between the mutants and the wild type. No changes in the relative content of photosynthetic proteins were found by differential stable isotope labeling and liquid chromatography-mass spectrometry (LC-MS) analyses. PPIase activity was measured in vitro in isolated thylakoid lumen samples using two different synthetic peptide substrates. Depending on the peptide substrate used for the assay, the PPIase activity in the thylakoid lumen of the mutants lacking either AtFKBP13 or both AtFKBP13 and AtCYP20-2 was as low as 10 or 2% of that in the wild type. Residual PPIase activity detected in the double mutant originated from AtCYP20-3, a cyclophilin from chloroplast stroma contaminating thylakoid lumen preparations. None of the mutants differed from the wild-type plants when grown under normal, cold stress or high light conditions. It is concluded that cellular functions of immunophilins in the thylakoid lumen of chloroplasts are not related to their PPIase capacity and should be investigated beyond this enzymatic activity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Ciclofilinas/metabolismo , Peptidilprolil Isomerase/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Tilacoides/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ciclofilinas/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Mutagênese Insercional , Mutação , Peptidilprolil Isomerase/genética , Proteômica , Proteínas de Ligação a Tacrolimo/genética , Tilacoides/genética
10.
Methods Mol Biol ; 479: 133-46, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19083170

RESUMO

Light- and redox-controlled reversible phosphorylation of thylakoid proteins regulates short- and long-term acclimation of plants to environmental cues. The major phosphoproteins in thylakoids belong to photosystem II and its light-harvesting antenna but phosphorylation of subunits of other thylakoid protein complexes has been detected as well. The detection methods include electrophoretic separation of proteins and detection of phosphoproteins with a phosphoaminoacid-specific antibody or phosphoprotein-specific dye. The use of mass spectrometry allows the identification of exact phosphorylation site(s) in the proteins. Various methods for detection of phosphoproteins in thylakoids are outlined including phosphopeptide preparation for mass spectrometric analyses and quantitative analysis of protein phosphorylation.


Assuntos
Fosfoproteínas/análise , Proteínas de Plantas/metabolismo , Tilacoides/metabolismo , Espectrometria de Massas , Fosfoproteínas/metabolismo , Fosforilação , Complexo de Proteína do Fotossistema II/metabolismo
11.
Biochim Biophys Acta ; 1767(6): 449-57, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17184728

RESUMO

Recent advances in vectorial proteomics of protein domains exposed to the surface of photosynthetic thylakoid membranes of plants and the green alga Chlamydomonas reinhardtii allowed mapping of in vivo phosphorylation sites in integral and peripheral membrane proteins. In plants, significant changes of thylakoid protein phosphorylation are observed in response to stress, particularly in photosystem II under high light or high temperature stress. Thylakoid protein phosphorylation in the algae is much more responsive to the ambient redox and light conditions, as well as to CO(2) availability. The light-dependent multiple and differential phosphorylation of CP29 linker protein in the green algae is suggested to control photosynthetic state transitions and uncoupling of light harvesting proteins from photosystem II under high light. The similar role for regulation of the dynamic distribution of light harvesting proteins in plants is proposed for the TSP9 protein, which together with other recently discovered peripheral proteins undergoes specific environment- and redox-dependent phosphorylation at the thylakoid surface. This review focuses on the environmentally modulated reversible phosphorylation of thylakoid proteins related to their membrane dynamics and affinity towards particular photosynthetic protein complexes.


Assuntos
Proteínas de Algas/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/fisiologia , Animais , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/efeitos da radiação , Modelos Biológicos , Fosforilação , Proteômica , Tilacoides/efeitos da radiação
12.
FEBS J ; 275(8): 1767-77, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18331354

RESUMO

Exposure of Arabidopsis thaliana plants to high levels of light revealed specific phosphorylation of a 40 kDa protein in photosynthetic thylakoid membranes. The protein was identified by MS as extracellular calcium-sensing receptor (CaS), previously reported to be located in the plasma membrane. By confocal laser scanning microscopy and subcellular fractionation, it was demonstrated that CaS localizes to the chloroplasts and is enriched in stroma thylakoids. The phosphorylation level of CaS responded strongly to light intensity. The light-dependent thylakoid protein kinase STN8 is required for CaS phosphorylation. The phosphorylation site was mapped to the stroma-exposed Thr380, located in a motif for interaction with 14-3-3 proteins and proteins with forkhead-associated domains, which suggests the involvement of CaS in stress responses and signaling pathways. The knockout Arabidopsis lines revealed a significant role for CaS in plant growth and development.


Assuntos
Arabidopsis/metabolismo , Luz , Fosfoproteínas/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Tilacoides/metabolismo , Sequência de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Peso Molecular , Mutação/genética , Fenótipo , Fosfoproteínas/química , Fosfoproteínas/genética , Fosforilação , Proteínas Quinases/metabolismo , Receptores de Detecção de Cálcio/química , Receptores de Detecção de Cálcio/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
13.
Biochem Biophys Res Commun ; 367(1): 201-7, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18167308

RESUMO

The mitochondrial enzyme 1-acyl-sn-glycerol-3-phosphate acyltransferase (mtGPAT1) catalyzes a rate-limiting step in triacylglycerol and glycerophospholipid biosynthesis, which can be modulated by protein kinases in cell free analyses. We report that treatment of primary rat adipocytes with insulin acutely affects the activity of mtGPAT1 by increasing V(MAX) and K(M) for the substrates glycerol-3-phosphate and palmitoyl-CoA. Proteolytic cleavage of isolated mitochondrial membranes and mass spectrometric peptide sequencing identify in vivo phosphorylation of serine 632 and serine 639 in mtGPAT1. These phosphorylation sites correspond to casein kinase-2 consensus sequences and are highly conserved in chordate animal, but not fly, fungal or plant, mtGPAT1.


Assuntos
Adipócitos/efeitos dos fármacos , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Insulina/farmacologia , Mitocôndrias/efeitos dos fármacos , Proteínas Quinases/metabolismo , Adipócitos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Caseína Quinase II/metabolismo , Catálise , Glicerofosfolipídeos/biossíntese , Cinética , Espectrometria de Massas , Mitocôndrias/enzimologia , Dados de Sequência Molecular , Fosforilação , Ratos , Ratos Sprague-Dawley , Serina/química , Serina/metabolismo , Triglicerídeos/biossíntese
14.
Methods Mol Biol ; 355: 305-16, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17093319

RESUMO

Reversible protein phosphorylation is crucially involved in all aspects of plant cell physiology. The highly challenging task of revealing and characterizing the dynamic protein phosphorylation networks in plants has only recently begun to become feasible, owing to application of dedicated proteomics and mass spectrometry techniques. The experimental methodology that identified most of the presently known proteins phosphorylated in vivo is based on protein cleavage with trypsin, following chromatographic enrichment of phosphorylated peptides and mass spectrometric fragmentation and sequencing of these phosphopeptides. This procedure is most efficient when it is limited to the tryptic digestion of proteins in distinct isolated fractions or compartments of plant cells. Immobilized metal affinity chromatography (IMAC) is most useful for phosphopeptide enrichment after methylation of the peptides in the complex protein digests. The following tandem mass spectrometry of the isolated phosphopeptides results in both identification of phosphorylated proteins and mapping of the in vivo phosphorylation sites. The relative quantitation of the extent of phosphorylation at individual protein modification sites may be accomplished by either stable isotope labeling technique or dedicated liquid chromatography-mass spectrometry measurements.


Assuntos
Fosfoproteínas/análise , Proteínas de Plantas/metabolismo , Proteômica/métodos , Fracionamento Celular , Fracionamento Químico , Cromatografia de Afinidade/métodos , Cromatografia Líquida/métodos , Indicadores e Reagentes , Fosfopeptídeos/química , Fosfopeptídeos/isolamento & purificação , Fosfoproteínas/química , Fosfoproteínas/isolamento & purificação , Fosforilação , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Plantas/química , Solubilidade , Espectrometria de Massas por Ionização por Electrospray/métodos , Tripsina
15.
Biochemistry ; 45(51): 15633-43, 2006 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-17176085

RESUMO

Thylakoid soluble phosphoprotein of 9 kDa (TSP9) has been identified as a plant-specific protein in the photosynthetic thylakoid membrane (Carlberg et al. (2003) Proc. Natl. Acad. Sci. 100, 757-762). Nonphosphorylated TSP9 is associated with the membrane, whereas, after light-induced phosphorylation, a fraction of the phosphorylated TSP9 is released into the aqueous stroma. By NMR spectroscopy, we have determined the structural features of nonphosphorylated TSP9 both in aqueous solution and in membrane mimetic micelles. The results show that both wild type nonphosphorylated TSP9 and a triple-mutant (T46E + T53E + T60E) mimic of the triphosphorylated form of TSP9 are disordered under aqueous conditions, but adopt an ordered conformation in the presence of detergent micelles. The micelle-induced structural features, which are similar in micelles either of SDS or dodecylphosphocholine (DPC), consist of an N-terminal alpha-helix, which may represent the primary site of interaction between TSP9 and binding partners, and a less structured helical turn near the C-terminus. These structured elements contain mainly hydrophobic residues. NMR relaxation data for nonphosphorylated TSP9 in SDS micelles indicated that the molecule is highly flexible with the highest order in the N-terminal alpha-helix. Intermolecular NOE signals, as well as spin probe-induced broadening of NMR signals, demonstrated that the SDS micelles contact both the structured and a portion of the unstructured regions of TSP9, in particular, those containing the three phosphorylation sites (T46, T53, and T60). This interaction may explain the selective dissociation of phosphorylated TSP9 from the membrane. Our study presents a structural model for the role played by the structured and unstructured regions of TSP9 in its membrane association and biological function.


Assuntos
Micelas , Fosfoproteínas/química , Complexo de Proteína do Fotossistema II/química , Dobramento de Proteína , Spinacia oleracea , Tilacoides/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Peso Molecular , Mutagênese Sítio-Dirigida , Fosfoproteínas/genética , Fosfoproteínas/fisiologia , Fosforilação , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/fisiologia , Conformação Proteica , Solubilidade , Termodinâmica , Tilacoides/genética
16.
FEBS Lett ; 580(15): 3671-6, 2006 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-16765949

RESUMO

Proteomic, enzymatic, and mutant analyses revealed that peptidyl-prolyl isomerase (PPIase) activity in the chloroplast thylakoid lumen of Arabidopsis is determined by two immunophilins: AtCYP20-2 and AtFKBP13. These two enzymes are responsible for PPIase activity in both soluble and membrane-associated fractions of thylakoid lumen suggesting that other lumenal immunophilins are not active towards the peptide substrates. In thiol-reducing conditions PPIase activity of the isolated AtFKBP13 and of the total thylakoid lumen is suppressed several fold. Profound redox-dependence of PPIase activity implies oxidative activation of protein folding catalysis under oxidative stress and photosynthetic oxygen production in the thylakoid lumen of plant chloroplasts.


Assuntos
Arabidopsis/enzimologia , Peptidilprolil Isomerase/metabolismo , Tilacoides/enzimologia , Sequência de Aminoácidos , Ciclofilinas/química , Ciclofilinas/metabolismo , Imunofilinas/metabolismo , Dados de Sequência Molecular , Oxirredução , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/metabolismo
17.
FEBS Lett ; 579(21): 4808-12, 2005 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-16109415

RESUMO

We show that the thylakoid membrane phosphoprotein TMP14 is a novel subunit of plant photosystem I (PSI). Blue native/SDS-PAGE and sucrose gradient fractionation demonstrated the association of the protein exclusively with PSI. We designate the protein PSI-P. The presence of PSI-P subunit in Arabidopsis mutants lacking other PSI subunits was analyzed and suggested a location in the proximity of PSI-L, -H and -O subunits. The PSI-P protein was not differentially phosphorylated in state 1 and state 2.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Complexo de Proteína do Fotossistema I/química , Proteínas de Plantas/metabolismo , Subunidades Proteicas/metabolismo , Tilacoides/química , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA , Focalização Isoelétrica , Luz , Proteínas de Membrana/química , Modelos Moleculares , Peso Molecular , Fosforilação , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/química , Subunidades Proteicas/química , Tilacoides/metabolismo
18.
FEBS J ; 272(18): 4797-806, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16156798

RESUMO

The State 1 to State 2 transition in the photosynthetic membranes of plants and green algae involves the functional coupling of phosphorylated light-harvesting complexes of photosystem II (LHCII) to photosystem I (PSI). We present evidence suggesting that in Chlamydomonas reinhardtii this coupling may be aided by a hyper-phosphorylated form of the LHCII-like CP29 protein (Lhcbm4). MS analysis of CP29 showed that Thr6, Thr16 and Thr32, and Ser102 are phosphorylated in State 2, whereas in State 1-exposed cells only phosphorylation of Thr6 and Thr32 could be detected. The LHCI-PSI supercomplex isolated from the alga in State 2 was found to contain strongly associated CP29 in phosphorylated form. Electron microscopy suggests that the binding site for this highly phosphorylated CP29 is close to the PsaH protein. It is therefore postulated that redox-dependent multiple phosphorylation of CP29 in green algae is an integral part of the State transition process in which the structural changes of CP29, induced by reversible phosphorylation, determine the affinity of LHCII for either of the two photosystems.


Assuntos
Chlamydomonas reinhardtii/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Animais , Sítios de Ligação , Complexos de Proteínas Captadores de Luz/química , Espectrometria de Massas , Microscopia Eletrônica , Complexos Multiproteicos/química , Oxirredução , Fosforilação , Complexo de Proteína do Fotossistema II/química , Ligação Proteica
19.
Biochem J ; 383(Pt 2): 237-48, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15242332

RESUMO

Caveolae, the specialized invaginations of plasma membranes, formed sealed vesicles with outwards-orientated cytosolic surface after isolation from primary human adipocytes. This morphology allowed differential, vectorial identification of proteins at the opposite membrane surfaces by proteolysis and MS. Extracellular-exposed caveolae-specific proteins CD36 and copper-containing amine oxidase were concealed inside the vesicles and resisted trypsin treatment. The cytosol-orientated caveolins were efficiently digested by trypsin, producing peptides amenable to direct MS sequencing. Isolation of peripheral proteins associated with the cytosolic surface of caveolae revealed a set of proteins that contained nuclear localization signals, leucine-zipper domains and PEST (amino acid sequence enriched in proline, glutamic acid, serine and threonine) domains implicated in regulation by proteolysis. In particular, PTRF (polymerase I and transcript release factor) was found as a major caveolae-associated protein and its co-localization with caveolin was confirmed by immunofluorescence confocal microscopy. PTRF was present at the surface of caveolae in the intact form and in five different truncated forms. Peptides (44 and 45 amino acids long) comprising both the PEST domains were sequenced by nanospray-quadrupole-time-of-flight MS from the full-length PTRF, but were not found in the truncated forms of the protein. Two endogenous cleavage sites corresponding to calpain specificity were identified in PTRF; one of them was in a PEST domain. Both cleavage sites were flanked by mono- or diphosphorylated sequences. The phosphorylation sites were localized to Ser-36, Ser-40, Ser-365 and Ser-366 in PTRF. Caveolae of human adipocytes are proposed to function in targeting, relocation and proteolytic control of PTRF and other PEST-domain-containing signalling proteins.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Cavéolas/química , Cavéolas/metabolismo , Proteômica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Núcleo Celular/química , Citosol/química , Mitocôndrias/química , Dados de Sequência Molecular , Especificidade de Órgãos , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Peptídeo Hidrolases/metabolismo , Fosforilação , Transporte Proteico , Frações Subcelulares/química , Tripsina/metabolismo
20.
FEBS Lett ; 564(1-2): 104-8, 2004 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-15094049

RESUMO

The surface-exposed peptides were cleaved by trypsin from the photosynthetic thylakoid membranes isolated from the green alga Chlamydomonas reinhardtii. Two phosphorylated peptides, enriched from the peptide mixture and sequenced by nanospray quadrupole time-of-flight mass spectrometry, revealed overlapping sequences corresponding to the N-terminus of a nuclear-encoded chlorophyll a/b-binding protein CP29. In contrast to all known nuclear-encoded thylakoid proteins, the transit peptide in the mature algal CP29 was not removed but processed by methionine excision, N-terminal acetylation and phosphorylation on threonine 6. The importance of this phosphorylation site is proposed as the reason of the unique transit peptide retention.


Assuntos
Chlamydomonas reinhardtii/química , Complexos de Proteínas Captadores de Luz/metabolismo , Proteínas de Membrana/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Sequência de Aminoácidos , Animais , Complexos de Proteínas Captadores de Luz/química , Espectrometria de Massas , Proteínas de Membrana/química , Fosforilação , Complexo de Proteína do Fotossistema II/química , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA