Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 21(2): 228-235, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38233503

RESUMO

Single-cell genetic heterogeneity is ubiquitous in microbial populations and an important aspect of microbial biology; however, we lack a broadly applicable and accessible method to study this heterogeneity in microbial populations. Here, we show a simple, robust and generalizable method for high-throughput single-cell sequencing of target genetic loci in diverse microbes using simple droplet microfluidics devices (droplet targeted amplicon sequencing; DoTA-seq). DoTA-seq serves as a platform to perform diverse assays for single-cell genetic analysis of microbial populations. Using DoTA-seq, we demonstrate the ability to simultaneously track the prevalence and taxonomic associations of >10 antibiotic-resistance genes and plasmids within human and mouse gut microbial communities. This workflow is a powerful and accessible platform for high-throughput single-cell sequencing of diverse microbial populations.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Análise de Célula Única , Animais , Humanos , Camundongos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
2.
Proc Natl Acad Sci U S A ; 121(39): e2403510121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39288179

RESUMO

Multispecies microbial communities drive most ecosystems on Earth. Chemical and biological interactions within these communities can affect the survival of individual members and the entire community. However, the prohibitively high number of possible interactions within a microbial community has made the characterization of factors that influence community development challenging. Here, we report a Microbial Community Interaction (µCI) device to advance the systematic study of chemical and biological interactions within a microbial community. The µCI creates a combinatorial landscape made up of an array of triangular wells interconnected with circular wells, which each contains either a different chemical or microbial strain, generating chemical gradients and revealing biological interactions. Bacillus cereus UW85 containing green fluorescent protein provided the "target" readout in the triangular wells, and antibiotics or microorganisms in adjacent circular wells are designated the "variables." The µCI device revealed that gentamicin and vancomycin are antagonistic to each other in inhibiting the target B. cereus UW85, displaying weaker inhibitory activity when used in combination than alone. We identified three-member communities constructed with isolates from the plant rhizosphere that increased or decreased the growth of B. cereus. The µCI device enables both strain-level and community-level insight. The scalable geometric design of the µCI device enables experiments with high combinatorial efficiency, thereby providing a simple, scalable platform for systematic interrogation of three-factor interactions that influence microorganisms in solitary or community life.


Assuntos
Bacillus cereus , Interações Microbianas/fisiologia , Microbiota/fisiologia , Antibacterianos/farmacologia , Vancomicina/farmacologia , Rizosfera , Gentamicinas/farmacologia , Dispositivos Lab-On-A-Chip , Proteínas de Fluorescência Verde/metabolismo
3.
PLoS Biol ; 21(5): e3002100, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37167201

RESUMO

In the human gut, the growth of the pathogen Clostridioides difficile is impacted by a complex web of interspecies interactions with members of human gut microbiota. We investigate the contribution of interspecies interactions on the antibiotic response of C. difficile to clinically relevant antibiotics using bottom-up assembly of human gut communities. We identify 2 classes of microbial interactions that alter C. difficile's antibiotic susceptibility: interactions resulting in increased ability of C. difficile to grow at high antibiotic concentrations (rare) and interactions resulting in C. difficile growth enhancement at low antibiotic concentrations (common). Based on genome-wide transcriptional profiling data, we demonstrate that metal sequestration due to hydrogen sulfide production by the prevalent gut species Desulfovibrio piger increases the minimum inhibitory concentration (MIC) of metronidazole for C. difficile. Competition with species that display higher sensitivity to the antibiotic than C. difficile leads to enhanced growth of C. difficile at low antibiotic concentrations due to competitive release. A dynamic computational model identifies the ecological principles driving this effect. Our results provide a deeper understanding of ecological and molecular principles shaping C. difficile's response to antibiotics, which could inform therapeutic interventions.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Microbioma Gastrointestinal , Humanos , Antibacterianos/farmacologia , Clostridioides
4.
Mol Syst Biol ; 19(3): e11406, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36714980

RESUMO

The molecular and ecological factors shaping horizontal gene transfer (HGT) via natural transformation in microbial communities are largely unknown, which is critical for understanding the emergence of antibiotic-resistant pathogens. We investigate key factors shaping HGT in a microbial co-culture by quantifying extracellular DNA release, species growth, and HGT efficiency over time. In the co-culture, plasmid release and HGT efficiency are significantly enhanced than in the respective monocultures. The donor is a key determinant of HGT efficiency as plasmids induce the SOS response, enter a multimerized state, and are released in high concentrations, enabling efficient HGT. However, HGT is reduced in response to high donor lysis rates. HGT is independent of the donor viability state as both live and dead cells transfer the plasmid with high efficiency. In sum, plasmid HGT via natural transformation depends on the interplay of plasmid properties, donor stress responses and lysis rates, and interspecies interactions.


Assuntos
Antibacterianos , DNA , Técnicas de Cocultura , Plasmídeos/genética , Antibacterianos/farmacologia , Transferência Genética Horizontal
5.
PLoS Comput Biol ; 19(9): e1011436, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37773951

RESUMO

Microbiomes interact dynamically with their environment to perform exploitable functions such as production of valuable metabolites and degradation of toxic metabolites for a wide range of applications in human health, agriculture, and environmental cleanup. Developing computational models to predict the key bacterial species and environmental factors to build and optimize such functions are crucial to accelerate microbial community engineering. However, there is an unknown web of interactions that determine the highly complex and dynamic behavior of these systems, which precludes the development of models based on known mechanisms. By contrast, entirely data-driven machine learning models can produce physically unrealistic predictions and often require significant amounts of experimental data to learn system behavior. We develop a physically-constrained recurrent neural network that preserves model flexibility but is constrained to produce physically consistent predictions and show that it can outperform existing machine learning methods in the prediction of certain experimentally measured species abundance and metabolite concentrations. Further, we present a closed-loop, Bayesian experimental design algorithm to guide data collection by selecting experimental conditions that simultaneously maximize information gain and target microbial community functions. Using a bioreactor case study, we demonstrate how the proposed framework can be used to efficiently navigate a large design space to identify optimal operating conditions. The proposed methodology offers a flexible machine learning approach specifically tailored to optimize microbiome target functions through the sequential design of informative experiments that seek to explore and exploit community functions.


Assuntos
Microbiota , Projetos de Pesquisa , Humanos , Teorema de Bayes , Redes Neurais de Computação , Algoritmos
6.
Annu Rev Biomed Eng ; 23: 169-201, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33781078

RESUMO

Microbiomes are complex and ubiquitous networks of microorganisms whose seemingly limitless chemical transformations could be harnessed to benefit agriculture, medicine, and biotechnology. The spatial and temporal changes in microbiome composition and function are influenced by a multitude of molecular and ecological factors. This complexity yields both versatility and challenges in designing synthetic microbiomes and perturbing natural microbiomes in controlled, predictable ways. In this review, we describe factors that give rise to emergent spatial and temporal microbiome properties and the meta-omics and computational modeling tools that can be used to understand microbiomes at the cellular and system levels. We also describe strategies for designing and engineering microbiomes to enhance or build novel functions. Throughout the review, we discuss key knowledge and technology gaps for elucidating the networks and deciphering key control points for microbiome engineering, and highlight examples where multiple omics and modeling approaches can be integrated to address these gaps.


Assuntos
Microbiota , Biologia Sintética , Humanos
7.
Mol Syst Biol ; 17(10): e10355, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34693621

RESUMO

Understanding the principles of colonization resistance of the gut microbiome to the pathogen Clostridioides difficile will enable the design of defined bacterial therapeutics. We investigate the ecological principles of community resistance to C. difficile using a synthetic human gut microbiome. Using a dynamic computational model, we demonstrate that C. difficile receives the largest number and magnitude of incoming negative interactions. Our results show that C. difficile is in a unique class of species that display a strong negative dependence between growth and species richness. We identify molecular mechanisms of inhibition including acidification of the environment and competition over resources. We demonstrate that Clostridium hiranonis strongly inhibits C. difficile partially via resource competition. Increasing the initial density of C. difficile can increase its abundance in the assembled community, but community context determines the maximum achievable C. difficile abundance. Our work suggests that the C. difficile inhibitory potential of defined bacterial therapeutics can be optimized by designing communities featuring a combination of mechanisms including species richness, environment acidification, and resource competition.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Microbioma Gastrointestinal , Bactérias , Clostridioides , Infecções por Clostridium/tratamento farmacológico , Humanos
8.
PLoS Comput Biol ; 15(3): e1006828, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30908479

RESUMO

We present a nonlinear programming (NLP) framework for the scalable solution of parameter estimation problems that arise in dynamic modeling of biological systems. Such problems are computationally challenging because they often involve highly nonlinear and stiff differential equations as well as many experimental data sets and parameters. The proposed framework uses cutting-edge modeling and solution tools which are computationally efficient, robust, and easy-to-use. Specifically, our framework uses a time discretization approach that: i) avoids repetitive simulations of the dynamic model, ii) enables fully algebraic model implementations and computation of derivatives, and iii) enables the use of computationally efficient nonlinear interior point solvers that exploit sparse and structured linear algebra techniques. We demonstrate these capabilities by solving estimation problems for synthetic human gut microbiome community models. We show that an instance with 156 parameters, 144 differential equations, and 1,704 experimental data points can be solved in less than 3 minutes using our proposed framework (while an off-the-shelf simulation-based solution framework requires over 7 hours). We also create large instances to show that the proposed framework is scalable and can solve problems with up to 2,352 parameters, 2,304 differential equations, and 20,352 data points in less than 15 minutes. The proposed framework is flexible and easy-to-use, can be broadly applied to dynamic models of biological systems, and enables the implementation of sophisticated estimation techniques to quantify parameter uncertainty, to diagnose observability/uniqueness issues, to perform model selection, and to handle outliers.


Assuntos
Modelos Biológicos , Dinâmica não Linear , Software , Biologia de Sistemas/métodos , Bactérias , Microbioma Gastrointestinal/fisiologia , Humanos
9.
Biochemistry ; 58(2): 94-107, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30457843

RESUMO

Microbiomes impact nearly every environment on Earth by modulating the molecular composition of the environment. Temporally changing environmental stimuli and spatial organization are major variables shaping the structure and function of microbiomes. The web of interactions among members of these communities and between the organisms and the environment dictates microbiome functions. Microbial interactions are major drivers of microbiomes and are modulated by spatiotemporal parameters. A mechanistic and quantitative understanding of ecological, molecular, and environmental forces shaping microbiomes could inform strategies to control microbiome dynamics and functions. Major challenges for harnessing the potential of microbiomes for diverse applications include the development of predictive modeling frameworks and tools for precise manipulation of microbiome behaviors.


Assuntos
Biologia Computacional/métodos , Microbiota/fisiologia , Modelos Biológicos , Biologia Sintética/métodos , Evolução Biológica , Teoria dos Jogos , Genoma Microbiano , Análise Espaço-Temporal
10.
Mol Syst Biol ; 14(6): e8157, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29930200

RESUMO

The ecological forces that govern the assembly and stability of the human gut microbiota remain unresolved. We developed a generalizable model-guided framework to predict higher-dimensional consortia from time-resolved measurements of lower-order assemblages. This method was employed to decipher microbial interactions in a diverse human gut microbiome synthetic community. We show that pairwise interactions are major drivers of multi-species community dynamics, as opposed to higher-order interactions. The inferred ecological network exhibits a high proportion of negative and frequent positive interactions. Ecological drivers and responsive recipient species were discovered in the network. Our model demonstrated that a prevalent positive and negative interaction topology enables robust coexistence by implementing a negative feedback loop that balances disparities in monospecies fitness levels. We show that negative interactions could generate history-dependent responses of initial species proportions that frequently do not originate from bistability. Measurements of extracellular metabolites illuminated the metabolic capabilities of monospecies and potential molecular basis of microbial interactions. In sum, these methods defined the ecological roles of major human-associated intestinal species and illuminated design principles of microbial communities.


Assuntos
Microbioma Gastrointestinal/fisiologia , Interações Microbianas , Fenômenos Fisiológicos Bacterianos , Biologia Computacional/métodos , Humanos , Metabolômica , Modelos Biológicos
11.
PLoS Biol ; 13(1): e1002042, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25626086

RESUMO

Delineating the strategies by which cells contend with combinatorial changing environments is crucial for understanding cellular regulatory organization. When presented with two carbon sources, microorganisms first consume the carbon substrate that supports the highest growth rate (e.g., glucose) and then switch to the secondary carbon source (e.g., galactose), a paradigm known as the Monod model. Sequential sugar utilization has been attributed to transcriptional repression of the secondary metabolic pathway, followed by activation of this pathway upon depletion of the preferred carbon source. In this work, we demonstrate that although Saccharomyces cerevisiae cells consume glucose before galactose, the galactose regulatory pathway is activated in a fraction of the cell population hours before glucose is fully consumed. This early activation reduces the time required for the population to transition between the two metabolic programs and provides a fitness advantage that might be crucial in competitive environments.


Assuntos
Saccharomyces cerevisiae/metabolismo , Metabolismo dos Carboidratos , Simulação por Computador , Metabolismo Energético , Galactose/fisiologia , Regulação Fúngica da Expressão Gênica , Interação Gene-Ambiente , Genes Fúngicos , Glucose/fisiologia , Modelos Biológicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Ativação Transcricional
13.
PLoS Comput Biol ; 11(10): e1004462, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26484538

RESUMO

Stochastic fluctuations in signaling and gene expression limit the ability of cells to sense the state of their environment, transfer this information along cellular pathways, and respond to it with high precision. Mutual information is now often used to quantify the fidelity with which information is transmitted along a cellular pathway. Mutual information calculations from experimental data have mostly generated low values, suggesting that cells might have relatively low signal transmission fidelity. In this work, we demonstrate that mutual information calculations might be artificially lowered by cell-to-cell variability in both initial conditions and slowly fluctuating global factors across the population. We carry out our analysis computationally using a simple signaling pathway and demonstrate that in the presence of slow global fluctuations, every cell might have its own high information transmission capacity but that population averaging underestimates this value. We also construct a simple synthetic transcriptional network and demonstrate using experimental measurements coupled to computational modeling that its operation is dominated by slow global variability, and hence that its mutual information is underestimated by a population averaged calculation.


Assuntos
Regulação da Expressão Gênica/fisiologia , Modelos Biológicos , Modelos Estatísticos , Proteoma/metabolismo , Transdução de Sinais/fisiologia , Animais , Simulação por Computador , Humanos , Processos Estocásticos
14.
Proc Natl Acad Sci U S A ; 109(48): E3324-33, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23150580

RESUMO

Feedback loops are ubiquitous features of biological networks and can produce significant phenotypic heterogeneity, including a bimodal distribution of gene expression across an isogenic cell population. In this work, a combination of experiments and computational modeling was used to explore the roles of multiple feedback loops in the bimodal, switch-like response of the Saccharomyces cerevisiae galactose regulatory network. Here, we show that bistability underlies the observed bimodality, as opposed to stochastic effects, and that two unique positive feedback loops established by Gal1p and Gal3p, which both regulate network activity by molecular sequestration of Gal80p, induce this bimodality. Indeed, systematically scanning through different single and multiple feedback loop knockouts, we demonstrate that there is always a concentration regime that preserves the system's bimodality, except for the double deletion of GAL1 and the GAL3 feedback loop, which exhibits a graded response for all conditions tested. The constitutive production rates of Gal1p and Gal3p operate as bifurcation parameters because variations in these rates can also abolish the system's bimodal response. Our model indicates that this second loss of bistability ensues from the inactivation of the remaining feedback loop by the overexpressed regulatory component. More broadly, we show that the sequestration binding affinity is a critical parameter that can tune the range of conditions for bistability in a circuit with positive feedback established by molecular sequestration. In this system, two positive feedback loops can significantly enhance the region of bistability and the dynamic response time.


Assuntos
Retroalimentação , Galactose/metabolismo , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/metabolismo , Processos Estocásticos
15.
bioRxiv ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37986770

RESUMO

The arginine dihydrolase pathway (arc operon) present in a subset of diverse human gut species enables arginine catabolism. This specialized metabolic pathway can alter environmental pH and nitrogen availability, which in turn could shape gut microbiota inter-species interactions. By exploiting synthetic control of gene expression, we investigated the role of the arc operon in probiotic Escherichia coli Nissle 1917 on human gut community assembly and health-relevant metabolite profiles in vitro and in the murine gut. By stabilizing environmental pH, the arc operon reduced variability in community composition across different initial pH perturbations. The abundance of butyrate producing bacteria were altered in response to arc operon activity and butyrate production was enhanced in a physiologically relevant pH range. While the presence of the arc operon altered community dynamics, it did not impact production of short chain fatty acids. Dynamic computational modeling of pH-mediated interactions reveals the quantitative contribution of this mechanism to community assembly. In sum, our framework to quantify the contribution of molecular pathways and mechanism modalities on microbial community dynamics and functions could be applied more broadly.

16.
Nat Commun ; 15(1): 7416, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198411

RESUMO

The human gut pathogen Clostridioides difficile displays substantial inter-strain genetic variability and confronts a changeable nutrient landscape in the gut. We examined how human gut microbiota inter-species interactions influence the growth and toxin production of various C. difficile strains across different nutrient environments. Negative interactions influencing C. difficile growth are prevalent in an environment containing a single highly accessible resource and sparse in an environment containing C. difficile-preferred carbohydrates. C. difficile toxin production displays significant community-context dependent variation and does not trend with growth-mediated inter-species interactions. C. difficile strains exhibit differences in interactions with Clostridium scindens and the ability to compete for proline. Further, C. difficile shows substantial differences in transcriptional profiles in co-culture with C. scindens or Clostridium hiranonis. C. difficile exhibits massive alterations in metabolism and other cellular processes in co-culture with C. hiranonis, reflecting their similar metabolic niches. C. hiranonis uniquely inhibits the growth and toxin production of diverse C. difficile strains across different nutrient environments and robustly ameliorates disease severity in mice. In sum, understanding the impact of C. difficile strain variability and nutrient environments on inter-species interactions could help improve the effectiveness of anti-C. difficile strategies.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Técnicas de Cocultura , Microbioma Gastrointestinal , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Clostridioides difficile/fisiologia , Humanos , Animais , Camundongos , Infecções por Clostridium/microbiologia , Nutrientes/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Interações Microbianas , Clostridium/metabolismo , Clostridium/genética , Feminino , Antibiose , Camundongos Endogâmicos C57BL
17.
bioRxiv ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38659900

RESUMO

The human gut pathogen Clostridioides difficile displays extreme genetic variability and confronts a changeable nutrient landscape in the gut. We mapped gut microbiota inter-species interactions impacting the growth and toxin production of diverse C. difficile strains in different nutrient environments. Although negative interactions impacting C. difficile are prevalent in environments promoting resource competition, they are sparse in an environment containing C. difficile-preferred carbohydrates. C. difficile strains display differences in interactions with Clostridium scindens and the ability to compete for proline. C. difficile toxin production displays substantial community-context dependent variation and does not trend with growth-mediated inter-species interactions. C. difficile shows substantial differences in transcriptional profiles in the presence of the closely related species C. hiranonis or C. scindens. In co-culture with C. hiranonis, C. difficile exhibits massive alterations in metabolism and other cellular processes, consistent with their high metabolic overlap. Further, Clostridium hiranonis inhibits the growth and toxin production of diverse C. difficile strains across different nutrient environments and ameliorates the disease severity of a C. difficile challenge in a murine model. In sum, strain-level variability and nutrient environments are major variables shaping gut microbiota interactions with C. difficile.

18.
ACS Synth Biol ; 13(5): 1424-1433, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38684225

RESUMO

The ability to control cellular processes using optogenetics is inducer-limited, with most optogenetic systems responding to blue light. To address this limitation, we leverage an integrated framework combining Lustro, a powerful high-throughput optogenetics platform, and machine learning tools to enable multiplexed control over blue light-sensitive optogenetic systems. Specifically, we identify light induction conditions for sequential activation as well as preferential activation and switching between pairs of light-sensitive split transcription factors in the budding yeast, Saccharomyces cerevisiae. We use the high-throughput data generated from Lustro to build a Bayesian optimization framework that incorporates data-driven learning, uncertainty quantification, and experimental design to enable the prediction of system behavior and the identification of optimal conditions for multiplexed control. This work lays the foundation for designing more advanced synthetic biological circuits incorporating optogenetics, where multiple circuit components can be controlled using designer light induction programs, with broad implications for biotechnology and bioengineering.


Assuntos
Teorema de Bayes , Optogenética , Saccharomyces cerevisiae , Optogenética/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biologia Sintética/métodos , Luz , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Aprendizado de Máquina , Ensaios de Triagem em Larga Escala/métodos
19.
bioRxiv ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39071283

RESUMO

Clostridioides difficile can transiently or persistently colonize the human gut, posing a risk factor for infections. This colonization is influenced by complex molecular and ecological interactions with human gut microbiota. By investigating C. difficile dynamics in human gut communities over hundreds of generations, we show patterns of stable coexistence, instability, or competitive exclusion. Lowering carbohydrate concentration shifted a community containing C. difficile and the prevalent human gut symbiont Phocaeicola vulgatus from competitive exclusion to coexistence, facilitated by increased cross-feeding. In this environment, C. difficile adapted via single-point mutations in key metabolic genes, altering its metabolic niche from proline to glucose utilization. These metabolic changes substantially impacted inter-species interactions and reduced disease severity in the mammalian gut. In sum, human gut microbiota interactions are crucial in shaping the long-term growth dynamics and evolutionary adaptations of C. difficile, offering key insights for developing anti-C. difficile strategies.

20.
Nat Microbiol ; 9(7): 1700-1712, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38914826

RESUMO

Microbially derived short-chain fatty acids (SCFAs) in the human gut are tightly coupled to host metabolism, immune regulation and integrity of the intestinal epithelium. However, the production of SCFAs can vary widely between individuals consuming the same diet, with lower levels often associated with disease. A systems-scale mechanistic understanding of this heterogeneity is lacking. Here we use a microbial community-scale metabolic modelling (MCMM) approach to predict individual-specific SCFA production profiles to assess the impact of different dietary, prebiotic and probiotic inputs. We evaluate the quantitative accuracy of our MCMMs using in vitro and ex vivo data, plus published human cohort data. We find that MCMM SCFA predictions are significantly associated with blood-derived clinical chemistries, including cardiometabolic and immunological health markers, across a large human cohort. Finally, we demonstrate how MCMMs can be leveraged to design personalized dietary, prebiotic and probiotic interventions aimed at optimizing SCFA production in the gut. Our model represents an approach to direct gut microbiome engineering for precision health and nutrition.


Assuntos
Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Humanos , Ácidos Graxos Voláteis/metabolismo , Prebióticos , Probióticos/metabolismo , Probióticos/administração & dosagem , Modelos Biológicos , Dieta , Bactérias/metabolismo , Bactérias/genética , Estudos de Coortes , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/metabolismo , Adulto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA