Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 229: 145-156, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30316886

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Plantago australis is a perennial plant widely distributed in Latin America, and its seeds and leaves are used in folk medicine to treat many diseases and conditions. Among its various chemical compounds, verbascoside is one of the most present, and has several pharmacological activities described, but there is not much information about its toxicity. AIMS OF THE STUDY: The aims of this study were to optimize the extraction of verbascoside from P. australis leaves with ultrasound methods, to develop a validated HPLC method to quantify verbascoside, and to evaluate the toxicological safety of the extract and verbascoside using in vitro and in vivo assays. MATERIALS AND METHODS: Dried leaves of P. australis were submitted to different extraction methods (percolation and ultrasound). The optimization of the ultrasound extraction was carried out by complete factorial design (22) and response surface methodology (RSM), followed by HPLC analysis for marker compounds. HPLC analysis was performed to verify the presence of the marker compounds aucubin, baicalein, oleanolic acid, ursolic acid and verbascoside. Mutagenicity was assessed by Salmonella/microsome mutagenicity assay. Cytotoxicity and genotoxicity were evaluated in V79 cells by reduction of tetrazolium salt (MTT) and neutral red uptake (NRU) assays, and alkaline comet assay, respectively. Verbascoside phototoxicity was assessed in 3T3 cells by the NRU phototoxicity assay. Wistar rats were used to perform the acute and sub-chronic toxicity tests. RESULTS: Among the marker compounds, only verbascoside was found in the hydroethanolic extract of P. australis leaves (PAHE); its highest concentration was obtained with the ultrasound-assisted extraction (UAE) method, optimized in 40 min and 25 °C, and the method validation was successfully applied. Neither PAHE nor verbascoside showed mutagenic or genotoxic activities. Cytotoxicity assays demonstrated that both PAHE and verbascoside reduced cell viability only at the highest concentrations, and verbascoside had no phototoxic properties. The in vivo toxicity evaluation of PAHE suggested that the LD50 is higher than 5000 mg/Kg, indicating that this extract is safe for use. In addition, no signs of toxicity were found in subchronic exposure. CONCLUSION: The HPLC method to quantify verbascoside was validated, and the extraction of verbascoside from P. australis leaves through ultrasound method was optimized, yielding an extract with 6% verbascoside. Our results suggest the toxicological safety of PAHE and verbascoside, corroborating the use of P. australis in folk medicine, and also indicate verbascoside as a potential ingredient in topical formulations.


Assuntos
Glucosídeos/toxicidade , Fenóis/toxicidade , Extratos Vegetais/toxicidade , Plantago , Células 3T3 , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Camundongos , Folhas de Planta , Ratos Wistar , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Testes de Toxicidade Aguda , Testes de Toxicidade Subcrônica
2.
J Ethnopharmacol ; 225: 178-188, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30009976

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Plantago australis is a popular plant found to be widely spread in Latin America. In folk medicine, the seeds and leaves are used mainly for anti-inflammatory, wound healing, among others. The verbascoside, a phenolic glycoside, is an active chemical component described in this species of plant, which has antioxidant, anti-inflammatory and healing effects. PURPOSE: The aim of the present study was to evaluate whether P. australis hydroethanolic extract (PAHE) standardized in verbascoside could promote wound healing associated with anti-inflammatory action within both in vitro and in vivo models. METHODS: For the wound healing activity, we used a Scratch Test, an assay capable of evaluating the migratory ability of keratinocyte cells (HaCat) in vitro and thereby confirming the activity in rats. For the anti-inflammatory activity, the inflammation was induced with LPS in microglial murine cells (N9). Inflammatory mediators (IL-6, IL-10, IL-12p70, INFγ, MCP-1 and TNFα) were measured and the activity of superoxide dismutase (SOD), catalase (CAT), and mitochondrial membrane potential were evaluated. In addition, using paw edema induced by carrageenan in rats, the anti-inflammatory activity in vivo was analyzed. RESULTS: The PAHE and verbascoside, induced a significant increase in migration of keratinocytes, at all concentrations tested when compared to the negative control. The wound healing activity in vivo showed that the PAHE accelerated the process. The treatments with PAHE and verbascoside induce increases in the antioxidants enzymes, suggesting a possible activation of these enzymes. However, this did not result in an increase in the expression of inflammatory mediators in microglial cells. In LPS activated cells the verbascoside displayed a significant reduction of TNFα, IL-6, IL-12p70, MCP-1 and INFγ, while the PAHE only displayed statistically significant reduction in TNFα. Interestingly, both the compounds could reduce the oxidative parameters in N9 cells activated by LPS. Additionally, pretreatment with PAHE inhibited the paw edema in rats. CONCLUSION: The results suggest that PAHE has wound healing activity, improving cells migration and, as well as was able to reverse the oxidation effect in LPS-activated N9 cells. The wound-healing and anti-inflammatory activities of PAHE were confirmed in vivo. In addition, the presence of verbascoside can be related to PAHE effects, since this compound was capable of increase keratinocytes migration and inhibiting inflammation mediators.


Assuntos
Anti-Inflamatórios/uso terapêutico , Extratos Vegetais/uso terapêutico , Plantago , Cicatrização/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Carragenina , Catalase/metabolismo , Linhagem Celular , Citocinas/imunologia , Citocinas/metabolismo , Edema/tratamento farmacológico , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Humanos , Lipopolissacarídeos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos CBA , Fenóis/farmacologia , Fenóis/uso terapêutico , Fitoterapia , Extratos Vegetais/farmacologia , Ratos Wistar , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA