Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ann Neurol ; 79(5): 806-825, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26950270

RESUMO

OBJECTIVE: The Epi4K Consortium recently identified 4 de novo mutations in the γ-aminobutyric acid type A (GABAA ) receptor ß3 subunit gene GABRB3 and 1 in the ß1 subunit gene GABRB1 in children with one of the epileptic encephalopathies (EEs) Lennox-Gastaut syndrome (LGS) and infantile spasms (IS). Because the etiology of EEs is often unknown, we determined the impact of GABRB mutations on GABAA receptor function and biogenesis. METHODS: GABAA receptor α1 and γ2L subunits were coexpressed with wild-type and/or mutant ß3 or ß1 subunits in HEK 293T cells. Currents were measured using whole cell and single channel patch clamp techniques. Surface and total expression levels were measured using flow cytometry. Potential structural perturbations in mutant GABAA receptors were explored using structural modeling. RESULTS: LGS-associated GABRB3(D120N, E180G, Y302C) mutations located at ß+ subunit interfaces reduced whole cell currents by decreasing single channel open probability without loss of surface receptors. In contrast, IS-associated GABRB3(N110D) and GABRB1(F246S) mutations at ß- subunit interfaces produced minor changes in whole cell current peak amplitude but altered current deactivation by decreasing or increasing single channel burst duration, respectively. GABRB3(E180G) and GABRB1(F246S) mutations also produced spontaneous channel openings. INTERPRETATION: All 5 de novo GABRB mutations impaired GABAA receptor function by rearranging conserved structural domains, supporting their role in EEs. The primary effect of LGS-associated mutations was reduced GABA-evoked peak current amplitudes, whereas the major impact of IS-associated mutations was on current kinetic properties. Despite lack of association with epilepsy syndromes, our results suggest GABRB1 as a candidate human epilepsy gene. Ann Neurol 2016;79:806-825.

2.
Epilepsia ; 58(8): 1451-1461, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28586508

RESUMO

OBJECTIVE: The mutant γ-aminobutyric acid type A (GABAA ) receptor γ2(Q390X) subunit (Q351X in the mature peptide) has been associated with the epileptic encephalopathy, Dravet syndrome, and the epilepsy syndrome genetic epilepsy with febrile seizures plus (GEFS+). The mutation generates a premature stop codon that results in translation of a stable truncated and misfolded γ2 subunit that accumulates in neurons, forms intracellular aggregates, disrupts incorporation of γ2 subunits into GABAA receptors, and affects trafficking of partnering α and ß subunits. Heterozygous Gabrg2+/Q390X knock-in (KI) mice had reduced cortical inhibition, spike wave discharges on electroencephalography (EEG), a lower seizure threshold to the convulsant drug pentylenetetrazol (PTZ), and spontaneous generalized tonic-clonic seizures. In this proof-of-principal study, we attempted to rescue these deficits in KI mice using a γ2 subunit gene (GABRG2) replacement therapy. METHODS: We introduced the GABRG2 allele by crossing Gabrg2+/Q390X KI mice with bacterial artificial chromosome (BAC) transgenic mice overexpressing HA (hemagglutinin)-tagged human γ2HA subunits, and compared GABAA receptor subunit expression by Western blot and immunohistochemical staining, seizure threshold by monitoring mouse behavior after PTZ-injection, and thalamocortical inhibition and network oscillation by slice recording. RESULTS: Compared to KI mice, adult mice carrying both mutant allele and transgene had increased wild-type γ2 and partnering α1 and ß2/3 subunits, increased miniature inhibitory postsynaptic current (mIPSC) amplitudes recorded from layer VI cortical neurons, reduced thalamocortical network oscillations, and higher PTZ seizure threshold. SIGNIFICANCE: Based on these results we suggest that seizures in a genetic epilepsy syndrome caused by epilepsy mutant γ2(Q390X) subunits with dominant negative effects could be rescued potentially by overexpression of wild-type γ2 subunits.


Assuntos
Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/terapia , Mutação/genética , Subunidades Proteicas/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Convulsivantes/toxicidade , Estimulação Elétrica , Humanos , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Técnicas de Patch-Clamp , Pentilenotetrazol/toxicidade , Subunidades Proteicas/genética , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Córtex Somatossensorial/citologia , Tálamo/citologia
3.
Ann Neurol ; 80(2): 312-3, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27270493
4.
Cell Rep ; 17(12): 3115-3124, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28009282

RESUMO

Reduced ocular pigmentation is common in Angelman syndrome (AS) and Prader-Willi syndrome (PWS) and is long thought to be caused by OCA2 deletion. GABRB3 is located in the 15q11-13 region flanked by UBE3A, GABRA5, GABRG3, and OCA2. Mutations in GABRB3 have frequently been associated with epilepsy and autism, consistent with its role in neurodevelopment. We report here a robust phenotype in the mouse in which deletion of Gabrb3 alone causes nearly complete loss of retinal pigmentation due to atrophied melanosomes, as evidenced by electron microscopy. Using exome and RNA sequencing, we confirmed that only the Gabrb3 gene was disrupted while the Oca2 gene was intact. However, mRNA abundance of Oca2 and other genes adjacent to Gabrb3 is substantially reduced in Gabrb3-/- mice, suggesting complex transcriptional regulation in this region. These results suggest that impairment in GABRB3 downregulates OCA2 and indirectly causes ocular hypopigmentation and visual defects in AS and PWS.


Assuntos
Transtorno Autístico/genética , Epilepsia/genética , Hipopigmentação/genética , Receptores de GABA-A/genética , Síndrome de Angelman/complicações , Síndrome de Angelman/genética , Síndrome de Angelman/patologia , Animais , Transtorno Autístico/complicações , Transtorno Autístico/patologia , Epilepsia/complicações , Epilepsia/patologia , Predisposição Genética para Doença , Impressão Genômica , Humanos , Hipopigmentação/patologia , Proteínas de Membrana Transportadoras/genética , Camundongos , Mutação , Síndrome de Prader-Willi/complicações , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA