Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499370

RESUMO

The electrochemical behavior of N-methyl- and N-benzyl-4-piperidone curcumin analogs were studied experimentally and theoretically. The studied compounds present different substituents at the para position in the phenyl rings (-H, -Br, -Cl, -CF3, and -OCH3). We assessed their electrochemical behavior by differential pulse and cyclic voltammetry, while we employed density functional theory (DFT) M06 and M06-2x functionals along with 6-311+G(d,p) basis set calculations to study them theoretically. The results showed that compounds suffer a two-electron irreversible oxidation in the range of 0.72 to 0.86 V, with surface concentrations ranging from 1.72 × 10-7 to 5.01 × 10-7 mol/cm2. The results also suggested that the process is diffusion-controlled for all compounds. M06 DFT calculations showed a better performance than M06-2x to obtain oxidation potentials. We found a good correlation between the experimental and theoretical oxidation potential for N-benzyl-4-piperidones (R2 = 0.9846), while the correlation was poor for N-methyl-4-piperidones (R2 = 0.3786), suggesting that the latter suffer a more complex oxidation process. Calculations of the BDEs for labile C-H bonds in the compounds suggested that neither of the two series of compounds has a different tendency for a proton-coupled electron transfer (PCET) oxidation process. It is proposed that irreversible behavior is due to possible dimerization of the compounds by Shono-type oxidation.


Assuntos
Curcumina , Piperidonas , Elétrons , Oxirredução , Transporte de Elétrons
2.
Molecules ; 24(11)2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185591

RESUMO

Avocado oil has generated growing interest among consumers due to its nutritional and technological characteristics, which is evidenced by an increase in the number of scientific articles that have been published on it. The purpose of the present research was to discuss the extraction methods, chemical composition, and various applications of avocado oil in the food and medicine industries. Our research was carried out through a systematic search in scientific databases. Even though there are no international regulations concerning the quality of avocado oil, some authors refer to the parameters used for olive oil, as stated by the Codex Alimentarius or the International Olive Oil Council. They indicate that the quality of avocado oil will depend on the quality and maturity of the fruit and the extraction technique in relation to temperature, solvents, and conservation. While the avocado fruit has been widely studied, there is a lack of knowledge about avocado oil and the potential health effects of consuming it. On the basis of the available data, avocado oil has established itself as an oil that has a very good nutritional value at low and high temperatures, with multiple technological applications that can be exploited for the benefit of its producers.


Assuntos
Persea/química , Óleos de Plantas/farmacologia , Antioxidantes/farmacologia , Biotecnologia , Contaminação de Alimentos , Humanos , Óleos de Plantas/isolamento & purificação
3.
J Environ Manage ; 147: 321-9, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25304521

RESUMO

We present a novel, insoluble, low-generation polyamidoamine (PAMAM)-based polymer. The monomer and polymer were characterized by fourier transform infrared spectroscopy, electrospray ionization mass spectrometry and thermogravimetric measurement, revealing that G0 acryloyl-terminated PAMAM were synthesized and polymerized using ammonium persulfate as an initiator, producing a high-density PAMAM derivative (PAMAM-HD). PAMAM-HD was tested for its ability to remove Na(I), K(I), Ca(II), Mg(II), Cu(II), Mn(II), Cd(II), Pb(II) and Zn(II) ions from acidic, neutral and basic aqueous solutions. PAMAM-HD efficiently removed metals ions from all three solutions. The greatest absorption efficiency at neutral pH was observed against Cu(II), Cd(II) and Pb(II), and the experimental data were supported by the calculated Kd values. Our data could have a significant impact on water purification by providing an inexpensive and efficient polymer for the removal of metal ions.


Assuntos
Descontaminação/métodos , Poliaminas/química , Polímeros/síntese química , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Íons/química , Íons/isolamento & purificação , Espectrometria de Massas , Metais/química , Metais/isolamento & purificação , Estrutura Molecular , Polímeros/química , Espectrofotometria Atômica , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Água/química
4.
Planta ; 219(6): 1050-6, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15605178

RESUMO

A family of Golgi-localised molecules was recently described in animals and fungi possessing extensive coiled regions and a short (approximately 40 residues) conserved C-terminal domain, called the GRIP domain, which is responsible for their location to this organelle. Using the model plant Arabidopsis thaliana, we identified a gene (AtGRIP) encoding a putative GRIP protein. We demonstrated that the C-terminal domain from AtGRIP functions as a Golgi-targeting sequence in plant cells. Localisation studies in living cells expressing the AtGRIP fused to a DsRed2 fluorescent probe, showed extensive co-location with the Golgi marker alpha-mannosidase I in transformed tobacco protoplasts. GRIP-like sequences were also found in genomic databases of rice, maize, wheat and alfalfa, suggesting that this domain may be a useful Golgi marker for immunolocalisation studies. Despite low sequence identity amongst GRIP domains, the plant GRIP sequence was able to target to the Golgi of mammalian cells. Taken together, these data indicate that GRIP domain proteins might be implicated in a targeting mechanism that is conserved amongst eukaryotes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Animais , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Células COS , Chlorocebus aethiops , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/genética , Dados de Sequência Molecular , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/biossíntese , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA