Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
New Phytol ; 237(3): 1014-1023, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36319609

RESUMO

The phenotypes of plants can be influenced by the environmental conditions experienced by their parents. However, there is still much uncertainty about how common and how predictable such parental environmental effects really are. We carried out a comprehensive experimental test for parental effects, subjecting plants of multiple Arabidopsis thaliana genotypes to 24 different biotic or abiotic stresses, or combinations thereof, and comparing their offspring phenotypes in a common environment. The majority of environmental stresses caused significant parental effects, with -35% to +38% changes in offspring fitness. The expression of parental effects was strongly genotype-dependent, and multiple environmental stresses often acted nonadditively when combined. The direction and magnitude of parental effects were unrelated to the direct effects on the parents: Some environmental stresses did not affect the parents but caused substantial effects on offspring, while for others, the situation was reversed. Our study demonstrates that parental environmental effects are common and often strong in A. thaliana, but they are genotype-dependent, act nonadditively, and are difficult to predict. We should thus be cautious with generalizing from simple studies with single plant genotypes and/or only few individual environmental stresses. A thorough and general understanding of parental effects requires large multifactorial experiments.


Assuntos
Arabidopsis , Arabidopsis/genética , Fenótipo , Genótipo , Clima , Estresse Fisiológico
2.
Mol Ecol ; 32(2): 428-443, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36324253

RESUMO

Environmentally induced DNA methylation variants may mediate gene expression responses to environmental changes. If such induced variants are transgenerationally stable, there is potential for expression responses to persist over multiple generations. Our current knowledge in plants, however, is almost exclusively based on studies conducted in sexually reproducing species where the majority of DNA methylation changes are subject to resetting in germlines, limiting the potential for transgenerational epigenetics stress memory. Asexual reproduction circumvents germlines, and may therefore be more conducive to long-term inheritance of epigenetic marks. Taking advantage of the rapid clonal reproduction of the common duckweed Lemna minor, we hypothesize that long-term, transgenerational stress memory from exposure to high temperature can be detected in DNA methylation profiles. Using a reduced representation bisulphite sequencing approach (epiGBS), we show that temperature stress induces DNA hypermethylation at many CG and CHG cytosine contexts but not CHH. Additionally, differential methylation in CHG context that was observed was still detected in a subset of cytosines, even after 3-12 generations of culturing in a common environment. This demonstrates a memory effect of stress reflected in the methylome and that persists over multiple clonal generations. Structural annotation revealed that this memory effect in CHG methylation was enriched in transposable elements. The observed epigenetic stress memory is probably caused by stable transgenerational persistence of temperature-induced DNA methylation variants across clonal generations. To the extent that such epigenetic memory has functional consequences for gene expression and phenotypes, this result suggests potential for long-term modulation of stress responses in asexual plants.


Assuntos
Metilação de DNA , Plantas , Metilação de DNA/genética , Plantas/genética , Elementos de DNA Transponíveis , Reprodução , Exposição Ambiental , Epigênese Genética
3.
Nat Methods ; 13(4): 322-4, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26855363

RESUMO

We describe epiGBS, a reduced representation bisulfite sequencing method for cost-effective exploration and comparative analysis of DNA methylation and genetic variation in hundreds of samples de novo. This method uses genotyping by sequencing of bisulfite-converted DNA followed by reliable de novo reference construction, mapping, variant calling, and distinction of single-nucleotide polymorphisms (SNPs) versus methylation variation (software is available at https://github.com/thomasvangurp/epiGBS). The output can be loaded directly into a genome browser for visualization and into RnBeads for analysis of differential methylation.


Assuntos
Metilação de DNA , Epigênese Genética , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos , Software , Humanos , Sulfitos/química
4.
Mol Ecol ; 28(17): 4097-4117, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31336411

RESUMO

In long-term grassland experiments, positive biodiversity effects on plant productivity commonly increase with time. Subsequent glasshouse experiments showed that these strengthened positive biodiversity effects persist not only in the local environment but also when plants are transferred into a common environment. Thus, we hypothesized that community diversity had acted as a selective agent, resulting in the emergence of plant monoculture and mixture types with differing genetic composition. To test our hypothesis, we grew offspring from plants that were grown for eleven years in monoculture or mixture environments in a biodiversity experiment (Jena Experiment) under controlled glasshouse conditions in monocultures or two-species mixtures. We used epiGBS, a genotyping-by-sequencing approach combined with bisulphite conversion, to provide integrative genetic and epigenetic (i.e., DNA methylation) data. We observed significant divergence in genetic and DNA methylation data according to selection history in three out of five perennial grassland species, namely Galium mollugo, Prunella vulgaris and Veronica chamaedrys, with DNA methylation differences mostly reflecting the genetic differences. In addition, current diversity levels in the glasshouse had weak effects on epigenetic variation. However, given the limited genome coverage of the reference-free bisulphite method epiGBS, it remains unclear how much of the differences in DNA methylation was independent of underlying genetic differences. Our results thus suggest that selection of genetic variants, and possibly epigenetic variants, caused the rapid emergence of monoculture and mixture types within plant species in the Jena Experiment.


Assuntos
Biodiversidade , Evolução Biológica , Pradaria , Sequência de Bases , Citosina/metabolismo , Metilação de DNA/genética , Epigênese Genética , Variação Genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Especificidade da Espécie
5.
BMC Genomics ; 19(1): 496, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29945543

RESUMO

BACKGROUND: Genome scans based on outlier analyses have revolutionized detection of genes involved in adaptive processes, but reports of some forms of selection, such as balancing selection, are still limited. It is unclear whether high throughput genotyping approaches for identification of single nucleotide polymorphisms have sufficient power to detect modes of selection expected to result in reduced genetic differentiation among populations. In this study, we used Arabidopsis lyrata to investigate whether signatures of balancing selection can be detected based on genomic smoothing of Restriction Associated DNA sequencing (RAD-seq) data. We compared how different sampling approaches (both within and between subspecies) and different background levels of polymorphism (inbreeding or outcrossing populations) affected the ability to detect genomic regions showing key signatures of balancing selection, specifically elevated polymorphism, reduced differentiation and shifts towards intermediate allele frequencies. We then tested whether candidate genes associated with disease resistance (R-gene analogs) were detected more frequently in these regions compared to other regions of the genome. RESULTS: We found that genomic regions showing elevated polymorphism contained a significantly higher density of R-gene analogs predicted to be under pathogen-mediated selection than regions of non-elevated polymorphism, and that many of these also showed evidence for an intermediate site-frequency spectrum based on Tajima's D. However, we found few genomic regions that showed both elevated polymorphism and reduced FST among populations, despite strong background levels of genetic differentiation among populations. This suggests either insufficient power to detect the reduced population structure predicted for genes under balancing selection using sparsely distributed RAD markers, or that other forms of diversifying selection are more common for the R-gene analogs tested. CONCLUSIONS: Genome scans based on a small number of individuals sampled from a wide range of populations were sufficient to confirm the relative scarcity of signatures of balancing selection across the genome, but also identified new potential disease resistance candidates within genomic regions showing signatures of balancing selection that would be strong candidates for further sequencing efforts.


Assuntos
Arabidopsis/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos , Frequência do Gene/genética , Variação Genética/genética , Genótipo , Seleção Genética/genética
6.
BMC Plant Biol ; 18(1): 277, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30419829

RESUMO

BACKGROUND: Temperature is one of the most important abiotic factors limiting plant growth and productivity. Many plants exhibit cold acclimation to prepare for the likelihood of freezing as temperatures decrease towards 0 °C. The physiological mechanisms associated with enabling increased tolerance to sub-zero temperatures vary between species and genotypes. Geographically and climatically diverse populations of Arabidopsis lyrata ssp. petraea were examined for their ability to survive, maintain functional photosynthetic parameters and cellular electrolyte leakage integrity after being exposed to sub-zero temperatures. The duration of cold acclimation prior to sub-zero temperatures was also manipulated (2 and 14 days). RESULTS: We found that there was significant natural variation in tolerances to sub-zero temperatures among populations of A. petraea. The origin of the population affected the acclimation response and survival after exposure to sub-zero temperatures. Cold acclimation of plants prior to sub-zero temperatures affected the maximum quantum efficiency of photosystem II (PSII) (Fv/Fm) in that plants that were cold acclimated for longer periods had higher values of Fv/Fm as a result of sub-zero temperatures. The inner immature leaves were better able to recover Fv/Fm from sub-zero temperatures than mature outer leaves. The Irish population (Leitrim) acclimated faster, in terms of survival and electrolyte leakage than the Norwegian population (Helin). CONCLUSION: The ability to survive, recover photosynthetic processes and cellular electrolyte leakage after exposure to sub-zero temperatures is highly dependent on the duration of cold acclimation.


Assuntos
Aclimatação , Arabidopsis/fisiologia , Clorofila/metabolismo , Fluorescência , Congelamento , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/fisiologia
7.
New Phytol ; 215(3): 1221-1234, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28590553

RESUMO

Transgenerational environmental effects can trigger strong phenotypic variation. However, it is unclear how cues from different preceding generations interact. Also, little is known about the genetic variation for these life history traits. Here, we present the effects of grandparental and parental mild heat, and their combination, on four traits of the third-generation phenotype of 14 Arabidopsis thaliana genotypes. We tested for correlations of these effects with climate and constructed a conceptual model to identify the environmental conditions that favour the parental effect on flowering time. We observed strong evidence for genotype-specific transgenerational effects. On average, A. thaliana accustomed to mild heat produced more seeds after two generations. Parental effects overruled grandparental effects in all traits except reproductive biomass. Flowering was generally accelerated by all transgenerational effects. Notably, the parental effect triggered earliest flowering in genotypes adapted to dry summers. Accordingly, this parental effect was favoured in the model when early summer heat terminated the growing season and environments were correlated across generations. Our results suggest that A. thaliana can partly accustom to mild heat over two generations and genotype-specific parental effects show non-random evolutionary divergence across populations that may support climate change adaptation in the Mediterranean.


Assuntos
Arabidopsis/genética , Clima , Temperatura Alta , Padrões de Herança/genética , Análise de Variância , Flores/fisiologia , Aptidão Genética , Genótipo , Geografia , Modelos Lineares , Fenótipo , Fatores de Tempo
8.
Sci Total Environ ; 955: 176962, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39423894

RESUMO

Nitrogen deposition and climate change have been identified as major threats to the biodiversity of semi-natural grasslands. Their relative contribution to recent biodiversity loss is however not fully understood, and may depend on local site conditions such as soil type, which hampers efforts to prevent further decline. We used data from >900 permanent plots in semi-natural grasslands in Dutch roadsides to investigate whether trends in plant diversity and community composition (2004-2020) could be explained by: (1) nitrogen deposition (NHx and NOy) and climate change (winter degree days and summer drought), (2) the interactive effect of nitrogen deposition and climate change, and (3) the interactive effect of nitrogen deposition and climate change with soil type. Overall we observed a decline in plant diversity and an increased dominance of tall species and grasses. These changes were linked to winter warming, but not to changes in summer drought and nitrogen deposition. The effect of winter warming was more pronounced in areas with higher NOy deposition, but was consistent across different soil types. Our results suggest that winter warming will become an important driver of plant diversity loss by altering competitive interactions, which could have major repercussions for other trophic levels and ecosystem services. Future conservation and restoration of grassland biodiversity therefore requires management regimes that are adapted to winter warming.

9.
Sci Data ; 11(1): 1138, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39414803

RESUMO

We introduce the database of European vascular plant red lists, a compilation of red list categories designated to taxa during in-country conservation assessments. Version 1.0 of the database is a standalone static dataset with open access in an end-user friendly format. Its aim is to fulfil the objectives of European Cooperation in Science and Technology (COST) Action 18201, ConservePlants. The database synthesizes data across 42 red lists from 41 countries, with participation of 39 out of a total of 44 European countries and two additional Mediterranean countries. The database contains 51,109 records representing 21,481 original taxonomic names with 37 different red list categories. During data harmonisation, 20,312 of the original taxonomic names were assigned to 17,873 unique accepted taxonomic names with scientific authorships across 184 families, 1650 genera and 15,593 species; and red list categories were standardised to 13 unique categories. We see this database as a source of information in diverse plant conservation activities and suitable for various stakeholders.


Assuntos
Conservação dos Recursos Naturais , Bases de Dados Factuais , Plantas , Europa (Continente) , Plantas/classificação , Biodiversidade
10.
Nat Ecol Evol ; 8(2): 267-281, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225425

RESUMO

Genetic monitoring of populations currently attracts interest in the context of the Convention on Biological Diversity but needs long-term planning and investments. However, genetic diversity has been largely neglected in biodiversity monitoring, and when addressed, it is treated separately, detached from other conservation issues, such as habitat alteration due to climate change. We report an accounting of efforts to monitor population genetic diversity in Europe (genetic monitoring effort, GME), the evaluation of which can help guide future capacity building and collaboration towards areas most in need of expanded monitoring. Overlaying GME with areas where the ranges of selected species of conservation interest approach current and future climate niche limits helps identify whether GME coincides with anticipated climate change effects on biodiversity. Our analysis suggests that country area, financial resources and conservation policy influence GME, high values of which only partially match species' joint patterns of limits to suitable climatic conditions. Populations at trailing climatic niche margins probably hold genetic diversity that is important for adaptation to changing climate. Our results illuminate the need in Europe for expanded investment in genetic monitoring across climate gradients occupied by focal species, a need arguably greatest in southeastern European countries. This need could be met in part by expanding the European Union's Birds and Habitats Directives to fully address the conservation and monitoring of genetic diversity.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Conservação dos Recursos Naturais/métodos , Europa (Continente) , Ecossistema , Variação Genética
11.
New Phytol ; 197(3): 989-1001, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23278159

RESUMO

Widely distributed species, such as the perennial plant Arabidopsis lyrata, face a range of environmental conditions across space, creating selective pressures for local evolutionary adaptation. The species' fragmented distribution may reduce gene flow, which could either reduce or increase adaptive potential. The substantial variation in phenotypic traits observed across this species' northwestern European range may reflect a combination of plastic responses to environmental conditions, evolutionary adaptation and nonadaptive genetic differentiation. We conducted multi-site common garden experiments to study differences in plant performance in core and marginal areas. Plants from eight source populations representing the species' full geographic and altitudinal range in northwestern Europe were planted out in Iceland, Sweden, Scotland and Wales. We found evidence of both strong plastic responses and apparently adaptive differentiation in performance. Most evidence for local adaptation was found at range margins, with the strongest effects on reproductive output. Both biotic and abiotic factors affected performance, especially at range margins. Performance of most plants was best in the Scottish and Swedish common garden sites, in the core of the species' distribution. Despite adaptations at range margins, the performance of the species declines at distributional limits, with extreme southern populations looking particularly vulnerable.


Assuntos
Adaptação Fisiológica , Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Meio Ambiente , Geografia , Islândia , Dinâmica Populacional , Análise de Componente Principal , Escócia , Suécia , País de Gales
12.
Biol Lett ; 8(5): 798-801, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22791708

RESUMO

Inbreeding depression (i.e. negative fitness effects of inbreeding) is central in evolutionary biology, affecting numerous aspects of population dynamics and demography, such as the evolution of mating systems, dispersal behaviour and the genetics of quantitative traits. Inbreeding depression is commonly observed in animals and plants. Here, we demonstrate that, in addition to genetic processes, epigenetic processes may play an important role in causing inbreeding effects. We compared epigenetic markers of outbred and inbred offspring of the perennial plant Scabiosa columbaria and found that inbreeding increases DNA methylation. Moreover, we found that inbreeding depression disappears when epigenetic variation is modified by treatment with a demethylation agent, linking inbreeding depression firmly to epigenetic variation. Our results suggest an as yet unknown mechanism for inbreeding effects and demonstrate the importance of evaluating the role of epigenetic processes in inbreeding depression.


Assuntos
Dipsacaceae/genética , Epigênese Genética , Endogamia , Azacitidina/farmacologia , Evolução Biológica , Biomassa , Cruzamentos Genéticos , Metilação de DNA , Dipsacaceae/fisiologia , Marcadores Genéticos , Fotossíntese , Dinâmica Populacional
13.
Mol Ecol Resour ; 22(5): 2087-2104, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35178872

RESUMO

Several reduced-representation bisulfite sequencing methods have been developed in recent years to determine cytosine methylation de novo in nonmodel species. Here, we present epiGBS2, a laboratory protocol based on epiGBS with a revised and user-friendly bioinformatics pipeline for a wide range of species with or without a reference genome. epiGBS2 is cost- and time-efficient and the computational workflow is designed in a user-friendly and reproducible manner. The library protocol allows a flexible choice of restriction enzymes and a double digest. The bioinformatics pipeline was integrated in the Snakemake workflow management system, which makes the pipeline easy to execute and modular, and parameter settings for important computational steps flexible. We implemented bismark for alignment and methylation analysis and we preprocessed alignment files by double masking to enable single nucleotide polymorphism calling with Freebayes (epiFreebayes). The performance of several critical steps in epiGBS2 was evaluated against baseline data sets from Arabidopsis thaliana and great tit (Parus major), which confirmed its overall good performance. We provide a detailed description of the laboratory protocol and an extensive manual of the bioinformatics pipeline, which is publicly accessible on github (https://github.com/nioo-knaw/epiGBS2) and zenodo (https://doi.org/10.5281/zenodo.4764652).


Assuntos
Software , Sulfitos , Metilação de DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos
14.
Methods Mol Biol ; 2093: 203-215, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32088898

RESUMO

Reduced representation bisulfite sequencing is an emerging methodology for evolutionary and ecological genomics and epigenomics research because it provides a cost-effective, high-resolution tool for exploration and comparative analysis of DNA methylation and genetic variation. Here we describe how digestion of genomic plant DNA with restriction enzymes, subsequent bisulfite conversion of unmethylated cytosines, and final DNA sequencing allow for the examination of genome-wide genetic and epigenetic variation in plants without the need for a reference genome. We explain how the use of several combinations of barcoded adapters for the creation of highly multiplexed libraries allows the inclusion of up to 144 different samples/individuals in only one sequencing lane.


Assuntos
Epigênese Genética/genética , Plantas/genética , Citosina/metabolismo , Metilação de DNA/genética , DNA de Plantas/genética , Epigenômica/métodos , Variação Genética/genética , Genoma de Planta/genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Sulfitos/metabolismo
15.
Proc Biol Sci ; 276(1661): 1495-506, 2009 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-19324821

RESUMO

Range margins are spatially complex, with environmental, genetic and phenotypic variations occurring across a range of spatial scales. We examine variation in temperature, genes and metabolomic profiles within and between populations of the subalpine perennial plant Arabidopsis lyrata ssp. petraea from across its northwest European range. Our surveys cover a gradient of fragmentation from largely continuous populations in Iceland, through more fragmented Scandinavian populations, to increasingly widely scattered populations at the range margin in Scotland, Wales and Ireland. Temperature regimes vary substantially within some populations, but within-population variation represents a larger fraction of genetic and especially metabolomic variances. Both physical distance and temperature differences between sites are found to be associated with genetic profiles, but not metabolomic profiles, and no relationship was found between genetic and metabolomic population structures in any region. Genetic similarity between plants within populations is the highest in the fragmented populations at the range margin, but differentiation across space is the highest there as well, suggesting that regional patterns of genetic diversity may be scale dependent.


Assuntos
Arabidopsis/genética , Arabidopsis/fisiologia , Demografia , Ecossistema , Genética Populacional , Metabolômica
16.
Ecol Evol ; 9(7): 3918-3936, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31015977

RESUMO

Current approaches for assessing the effects of invasive alien species (IAS) are biased toward the negative effects of these species, resulting in an incomplete picture of their real effects. This can result in an inefficient IAS management. We address this issue by describing the INvasive Species Effects Assessment Tool (INSEAT) that enables expert elicitation for rapidly assessing the ecological consequences of IAS using the ecosystem services (ES) framework. INSEAT scores the ecosystem service "gains and losses" using a scale that accounted for the magnitude and the reversibility of its effects. We tested INSEAT on 18 IAS in Great Britain. Here, we highlighted four case studies: Harmonia axyridis (Harlequin ladybird), Astacus leptodactylus (Turkish crayfish), Pacifastacus leniusculus (Signal crayfish) and Impatiens glandulifera (Himalayan balsam). The results demonstrated that a collation of different experts' opinions using INSEAT could yield valuable information on the invasive aliens' ecological and social effects. The users can identify certain IAS as ES providers and the trade-offs between the ES provision and loss associated with them. This practical tool can be useful for evidence-based policy and management decisions that consider the potential role of invasive species in delivering human well-being.

17.
New Phytol ; 179(1): 129-141, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18422899

RESUMO

The adaptive responses to atmospheric nitrogen deposition for different European accessions of Arabidopsis lyrata petraea were analysed using populations along a strong atmospheric N-deposition gradient. Plants were exposed to three N-deposition rates, reflecting the rates at the different locations, in a full factorial design. Differences between accessions in the response to N were found for important phenological and physiological response variables. For example, plants from low-deposition areas had higher nitrogen-use efficiencies (NUE) and C : N ratios than plants from areas high in N deposition when grown at low N-deposition rates. The NUE decreased in all accessions at higher experimental deposition rates. However, plants from high-deposition areas showed a limited capacity to increase their NUE at lower experimental deposition rates. Plants from low-deposition areas had faster growth rates, higher leaf turnover rates and shorter times to flowering, and showed a greater increase in growth rate in response to N deposition than those from high-deposition areas. Indications for adaptation to N deposition were found, and results suggest that adaptation of plants from areas high in N deposition to increased N deposition has resulted in the loss of plasticity.


Assuntos
Poluentes Atmosféricos/metabolismo , Arabidopsis/efeitos dos fármacos , Geografia , Nitrogênio/farmacologia , Adaptação Fisiológica , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Biomassa , Monitoramento Ambiental , Islândia , Nitrogênio/metabolismo , Noruega , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Solo , Reino Unido
18.
Ecol Evol ; 8(6): 3505-3517, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29607042

RESUMO

Populations often differ in phenotype and these differences can be caused by adaptation by natural selection, random neutral processes, and environmental responses. The most straightforward way to divide mechanisms that influence phenotypic variation is heritable variation and environmental-induced variation (e.g., plasticity). While genetic variation is responsible for most heritable phenotypic variation, part of this is also caused by nongenetic inheritance. Epigenetic processes may be one of the underlying mechanisms of plasticity and nongenetic inheritance and can therefore possibly contribute to heritable differences through drift and selection. Epigenetic variation may be influenced directly by the environment, and part of this variation can be transmitted to next generations. Field screenings combined with common garden experiments will add valuable insights into epigenetic differentiation, epigenetic memory and can help to reveal part of the relative importance of epigenetics in explaining trait variation. We explored both genetic and epigenetic diversity, structure and differentiation in the field and a common garden for five British and five French Scabiosa columbaria populations. Genetic and epigenetic variation was subsequently correlated with trait variation. Populations showed significant epigenetic differentiation between populations and countries in the field, but also when grown in a common garden. By comparing the epigenetic variation between field and common garden-grown plants, we showed that a considerable part of the epigenetic memory differed from the field-grown plants and was presumably environmentally induced. The memory component can consist of heritable variation in methylation that is not sensitive to environments and possibly genetically based, or environmentally induced variation that is heritable, or a combination of both. Additionally, random epimutations might be responsible for some differences as well. By comparing epigenetic variation in both the field and common environment, our study provides useful insight into the environmental and genetic components of epigenetic variation.

19.
PLoS One ; 11(3): e0151566, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26982489

RESUMO

Plant phenotypes can be affected by environments experienced by their parents. Parental environmental effects are reported for the first offspring generation and some studies showed persisting environmental effects in second and further offspring generations. However, the expression of these transgenerational effects proved context-dependent and their reproducibility can be low. Here we study the context-dependency of transgenerational effects by evaluating parental and transgenerational effects under a range of parental induction and offspring evaluation conditions. We systematically evaluated two factors that can influence the expression of transgenerational effects: single- versus multiple-generation exposure and offspring environment. For this purpose, we exposed a single homozygous Arabidopsis thaliana Col-0 line to salt stress for up to three generations and evaluated offspring performance under control and salt conditions in a climate chamber and in a natural environment. Parental as well as transgenerational effects were observed in almost all traits and all environments and traced back as far as great-grandparental environments. The length of exposure exerted strong effects; multiple-generation exposure often reduced the expression of the parental effect compared to single-generation exposure. Furthermore, the expression of transgenerational effects strongly depended on offspring environment for rosette diameter and flowering time, with opposite effects observed in field and greenhouse evaluation environments. Our results provide important new insights into the occurrence of transgenerational effects and contribute to a better understanding of the context-dependency of these effects.


Assuntos
Arabidopsis/fisiologia , Estresse Fisiológico , Clima , Cloreto de Sódio
20.
Trends Ecol Evol ; 30(2): 78-87, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25534246

RESUMO

The global loss of biodiversity continues at an alarming rate. Genomic approaches have been suggested as a promising tool for conservation practice as scaling up to genome-wide data can improve traditional conservation genetic inferences and provide qualitatively novel insights. However, the generation of genomic data and subsequent analyses and interpretations remain challenging and largely confined to academic research in ecology and evolution. This generates a gap between basic research and applicable solutions for conservation managers faced with multifaceted problems. Before the real-world conservation potential of genomic research can be realized, we suggest that current infrastructures need to be modified, methods must mature, analytical pipelines need to be developed, and successful case studies must be disseminated to practitioners.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Genômica , Adaptação Biológica , Genética Populacional , Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA