RESUMO
This corrects the article DOI: 10.1103/PhysRevLett.129.165101.
RESUMO
The dissipation of magnetized turbulence is an important paradigm for describing heating and energy transfer in astrophysical environments such as the solar corona and wind; however, the specific collisionless processes behind dissipation and heating remain relatively unconstrained by measurements. Remote sensing observations have suggested the presence of strong temperature anisotropy in the solar corona consistent with cyclotron resonant heating. In the solar wind, in situ magnetic field measurements reveal the presence of cyclotron waves, while measured ion velocity distribution functions have hinted at the active presence of cyclotron resonance. Here, we present Parker Solar Probe observations that connect the presence of ion-cyclotron waves directly to signatures of resonant damping in observed proton-velocity distributions using the framework of quasilinear theory. We show that the quasilinear evolution of the observed distribution functions should absorb the observed cyclotron wave population with a heating rate of 10^{-14} W/m^{3}, indicating significant heating of the solar wind.
RESUMO
After leaving the Sun's corona, the solar wind continues to accelerate and cools, but more slowly than expected for a freely expanding adiabatic gas. Alfvén waves are perturbations of the interplanetary magnetic field that transport energy. We use in situ measurements from the Parker Solar Probe and Solar Orbiter spacecraft to investigate a stream of solar wind as it traverses the inner heliosphere. The observations show heating and acceleration of the plasma between the outer edge of the corona and near the orbit of Venus, along with the presence of large-amplitude Alfvén waves. We calculate that the damping and mechanical work performed by the Alfvén waves are sufficient to power the heating and acceleration of the fast solar wind in the inner heliosphere.