Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Poult Sci ; 94(4): 740-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25681611

RESUMO

Cleaning and disinfection of the broiler stable environment is an essential part of farm hygiene management. Adequate cleaning and disinfection is essential for prevention and control of animal diseases and zoonoses. The goal of this study was to shed light on the dynamics of microbiological and non-microbiological parameters during the successive steps of cleaning and disinfection and to select the most suitable sampling methods and parameters to evaluate cleaning and disinfection in broiler houses. The effectiveness of cleaning and disinfection protocols was measured in six broiler houses on two farms through visual inspection, adenosine triphosphate hygiene monitoring and microbiological analyses. Samples were taken at three time points: 1) before cleaning, 2) after cleaning, and 3) after disinfection. Before cleaning and after disinfection, air samples were taken in addition to agar contact plates and swab samples taken from various sampling points for enumeration of total aerobic flora, Enterococcus spp., and Escherichia coli and the detection of E. coli and Salmonella. After cleaning, air samples, swab samples, and adenosine triphosphate swabs were taken and a visual score was also assigned for each sampling point. The mean total aerobic flora determined by swab samples decreased from 7.7±1.4 to 5.7±1.2 log CFU/625 cm2 after cleaning and to 4.2±1.6 log CFU/625 cm2 after disinfection. Agar contact plates were used as the standard for evaluating cleaning and disinfection, but in this study they were found to be less suitable than swabs for enumeration. In addition to measuring total aerobic flora, Enterococcus spp. seemed to be a better hygiene indicator to evaluate cleaning and disinfection protocols than E. coli. All stables were Salmonella negative, but the detection of its indicator organism E. coli provided additional information for evaluating cleaning and disinfection protocols. Adenosine triphosphate analyses gave additional information about the hygiene level of the different sampling points.


Assuntos
Galinhas , Desinfecção/métodos , Microbiologia Ambiental , Abrigo para Animais , Animais , Bélgica
2.
Poult Sci ; 94(8): 1986-93, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26047671

RESUMO

The present study evaluated the effectiveness of 4 cleaning protocols designed to reduce the bacteriological infection pressure on broiler farms and prevent food-borne zoonoses. Additionally, difficult to clean locations and possible sources of infection were identified. Cleaning and disinfection rounds were evaluated in 12 broiler houses on 5 farms through microbiological analyses and adenosine triphosphate hygiene monitoring. Samples were taken at 3 different times: before cleaning, after cleaning, and after disinfection. At each sampling time, swabs were taken from various locations for enumeration of the total aerobic flora and Enterococcus species pluralis ( SPP:). In addition, before cleaning and after disinfection, testing for Escherichia coli and Salmonella was carried out. Finally, adenosine triphosphate swabs and agar contact plates for total aerobic flora counts were taken after cleaning and disinfection, respectively. Total aerobic flora and Enterococcus spp. counts on the swab samples showed that cleaning protocols which were preceded by an overnight soaking with water caused a higher bacterial reduction compared to protocols without a preceding soaking step. Moreover, soaking of broiler houses leads to less water consumption and reduced working time during high pressure cleaning. No differences were found between protocols using cold or warm water during cleaning. Drinking cups, drain holes, and floor cracks were identified as critical locations for cleaning and disinfection in broiler houses.


Assuntos
Galinhas , Desinfecção , Microbiologia Ambiental , Abrigo para Animais , Animais , Enterococcus/isolamento & purificação , Escherichia coli/isolamento & purificação , Salmonella/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA