Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Trends Immunol ; 43(9): 757-775, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35965153

RESUMO

The procurement and management of nutrients and ability to fight infections are fundamental requirements for survival. These defense responses are bioenergetically costly, requiring the immune system to balance protection against pathogens with the need to maintain metabolic homeostasis. NF-κB transcription factors are central regulators of immunity and inflammation. Over the last two decades, these factors have emerged as a pivotal node coordinating the immune and metabolic systems in physiology and the etiopathogenesis of major threats to human health, including cancer, autoimmunity, chronic inflammation, and others. In this review, we discuss recent advances in understanding how NF-κB-dependent metabolic programs control inflammation, metabolism, and immunity and how improved knowledge of them may lead to better diagnostics and therapeutics for widespread human diseases.


Assuntos
NF-kappa B , Neoplasias , Autoimunidade , Homeostase , Humanos , Inflamação
2.
Semin Cell Dev Biol ; 98: 118-128, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31132468

RESUMO

NF-κB plays a pivotal role in oncogenesis. This transcription factor is best known for promoting cancer cell survival and tumour-driving inflammation. However, several lines of evidence support a crucial role for NF-κB in governing energy homeostasis and mediating cancer metabolic reprogramming. Mitochondria are central players in many metabolic processes altered in cancer. Beyond their bioenergetic activity, several facets of mitochondria biology, including mitochondrial dynamics and oxidative stress, promote and sustain malignant transformation. Recent reports revealed an intimate connection between NF-κB pathway and the oncogenic mitochondrial functions. NF-κB can impact mitochondrial respiration and mitochondrial dynamics, and, reciprocally, mitochondria can sense stress signals and convert them into cell biological responses leading to NF-κB activation. In this review we discuss their emerging reciprocal regulation and the significance of this interplay for anticancer therapy.


Assuntos
Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Neoplasias/metabolismo , Animais , Antineoplásicos/farmacologia , Reprogramação Celular/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia
3.
Semin Cell Dev Biol ; 78: 51-61, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28779979

RESUMO

Tumour promoting inflammation is widely recognized as a hallmark of cancer. The source of this chronic inflammation in cancer has been ascribed to the progressive activation over time of immune cells, mostly of the innate arm of the immune system. However, recent evidence has shown that chronic inflammation may also derive, at least in part, from senescent cells. Hence, due to the prominent role of inflammation in cancer, the cancer secretome definition includes all the secretory factors ensuing from the crosstalk between the cancer cell and the tumour microenvironment. The mechanistic basis underlying the paracrine signalling between the cancer cell and the surrounding tumour microenvironment in malignancy have been widely investigated by using in vivo models of cancers, thus identifying the NF-κB transcription factor as the molecular hub linking inflammation and cancer. In this review, we highlight the roles of NF-κB in regulating the inflammation-derived secretome emanating from immune and senescent cells, with a special focus on the bright and the dark sides of their pro-inflammatory signalling on tumorigenesis.


Assuntos
Transformação Celular Neoplásica/patologia , Inflamação/imunologia , Inflamação/patologia , Neoplasias/patologia , Proteoma/metabolismo , Fator de Transcrição RelA/metabolismo , Humanos , Proteínas I-kappa B/metabolismo , Imunidade Inata/imunologia , Microambiente Tumoral/imunologia
4.
BMC Cancer ; 16: 3, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26728044

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the most common malignant tumor of the liver. Non-alcoholic fatty liver disease (NAFLD) is a frequent chronic liver disorder in developed countries. NAFLD can progress through the more severe non alcoholic steatohepatitis (NASH), cirrhosis and, lastly, HCC. Genetic and epigenetic alterations of coding genes as well as deregulation of microRNAs (miRNAs) activity play a role in HCC development. In this study, the C57BL/6J mouse model was long term high-fat (HF) or low-fat (LF) diet fed, in order to analyze molecular mechanisms responsible for the hepatic damage progression. METHODS: Mice were HF or LF diet fed for different time points, then plasma and hepatic tissues were collected. Histological and clinical chemistry assays were performed to assess the progression of liver disease. MicroRNAs' differential expression was evaluated on pooled RNAs from tissues, and some miRNAs showing dysregulation were further analyzed at the individual level. RESULTS: Cholesterol, low and high density lipoproteins, triglycerides and alanine aminotransferase increase was detected in HF mice. Gross anatomical examination revealed hepatomegaly in HF livers, and histological analysis highlighted different degrees and levels of steatosis, inflammatory infiltrate and fibrosis in HF and LF animals, demonstrating the progression from NAFLD through NASH. Macroscopic nodules, showing typical neoplastic features, were observed in 20% of HF diet fed mice. Fifteen miRNAs differentially expressed in HF with respect to LF hepatic tissues during the progression of liver damage, and in tumors with respect to HF non tumor liver specimens were identified. Among them, miR-340-5p, miR-484, miR-574-3p, miR-720, whose expression was never described in NAFLD, NASH and HCC tissues, and miR-125a-5p and miR-182, which showed early and significant dysregulation in the sequential hepatic damage process. CONCLUSIONS: In this study, fifteen microRNAs which were modulated in hepatic tissues and in tumors during the transition NAFLD-NASH-HCC are reported. Besides some already described, new and early dysregulated miRNAs were identified. Functional analyses are needed to validate the results here obtained, and to better define the role of these molecules in the progression of the hepatic disease.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroRNAs/biossíntese , Hepatopatia Gordurosa não Alcoólica/genética , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Colesterol/sangue , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Camundongos , MicroRNAs/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Triglicerídeos/sangue
6.
Genes (Basel) ; 15(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38397187

RESUMO

Tumor-associated macrophages (TAMs) are the major component of the tumor microenvironment (TME), where they sustain tumor progression and or-tumor immunity. Due to their plasticity, macrophages can exhibit anti- or pro-tumor functions through the expression of different gene sets leading to distinct macrophage phenotypes: M1-like or pro-inflammatory and M2-like or anti-inflammatory. NF-κB transcription factors are central regulators of TAMs in cancers, where they often drive macrophage polarization toward an M2-like phenotype. Therefore, the NF-κB pathway is an attractive therapeutic target for cancer immunotherapy in a wide range of human tumors. Hence, targeting NF-κB pathway in the myeloid compartment is a potential clinical strategy to overcome microenvironment-induced immunosuppression and increase anti-tumor immunity. In this review, we discuss the role of NF-κB as a key driver of macrophage functions in tumors as well as the principal strategies to overcome tumor immunosuppression by targeting the NF-κB pathway.


Assuntos
NF-kappa B , Neoplasias , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Macrófagos/metabolismo , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Subunidade p50 de NF-kappa B , Fenótipo , Microambiente Tumoral/genética
7.
Genes (Basel) ; 14(10)2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37895302

RESUMO

Metabolism and the immunological state are intimately intertwined, as defense responses are bioenergetically expensive. Metabolic homeostasis is a key requirement for the proper function of immune cell subsets, and the perturbation of the immune-metabolic balance is a recurrent event in many human diseases, including cancer, due to nutrient fluctuation, hypoxia and additional metabolic changes occurring in the tumor microenvironment (TME). Although much remains to be understood in the field of immunometabolism, here, we report the current knowledge on both physiological and cancer-associated metabolic profiles of immune cells, and the main molecular circuits involved in their regulation, highlighting similarities and differences, and emphasizing immune metabolic liabilities that could be exploited in cancer therapy to overcome immune resistance.


Assuntos
Neoplasias , Vento , Humanos , Neoplasias/patologia , Microambiente Tumoral/genética
8.
J Biomed Biotechnol ; 2012: 926321, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22500111

RESUMO

The full activation of T cells necessitates the concomitant activation of two signals, the engagement of T-cell receptor by peptide/major histocompatibility complex II and an additional signal delivered by costimulatory molecules. The best characterized costimulatory molecules belong to B7/CD28 and TNF/TNFR families and play crucial roles in the modulation of immune response and improvement of antitumor immunity. Unfortunately, tumors often generate an immunosuppressive microenvironment, where T-cell response is attenuated by the lack of costimulatory molecules on the surface of cancer cells. Thus, targeting costimulatory pathways represent an attractive therapeutic strategy to enhance the antitumor immunity in several human cancers. Here, latest therapeutic approaches targeting costimulatory molecules will be described.


Assuntos
Antígenos B7/imunologia , Antígenos CD28/imunologia , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Animais , Humanos , Ativação Linfocitária , Neoplasias/tratamento farmacológico , Receptores do Fator de Necrose Tumoral/imunologia , Fator de Necrose Tumoral alfa/imunologia
9.
Front Oncol ; 12: 933922, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814425

RESUMO

Drug resistance is a major impediment to patient survival and remains the primary cause of unsuccessful cancer therapy. Drug resistance occurs in many tumors and is frequently induced by chemotherapy which triggers a defensive response both in cancerous and cancer-associated cells that constitute the tumor microenvironment (TME). Cell to cell communication within the TME is often mediated by extracellular vesicles (EVs) which carry specific tumor-promoting factors able to activate survival pathways and immune escape mechanisms, thus sustaining tumor progression and therapy resistance. NF-κB has been recognized as a crucial player in this context. NF-κB activation is involved in EVs release and EVs, in turn, can trigger NF-κB pathway activation in specific contexts, based on secreting cytotype and their specific delivered cargo. In this review, we discuss the role of NF-κB/EVs interplay that sustain chemoresistance in the TME by focusing on the molecular mechanisms that underlie inflammation, EVs release, and acquired drug resistance.

10.
Biomedicines ; 10(9)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36140335

RESUMO

NF-κB transcription factors are major drivers of tumor initiation and progression. NF-κB signaling is constitutively activated by genetic alterations or environmental signals in many human cancers, where it contributes to almost all hallmarks of malignancy, including sustained proliferation, cell death resistance, tumor-promoting inflammation, metabolic reprogramming, tissue invasion, angiogenesis, and metastasis. As such, the NF-κB pathway is an attractive therapeutic target in a broad range of human cancers, as well as in numerous non-malignant diseases. Currently, however, there is no clinically useful NF-κB inhibitor to treat oncological patients, owing to the preclusive, on-target toxicities of systemic NF-κB blockade. In this review, we discuss the principal and most promising strategies being developed to circumvent the inherent limitations of conventional IκB kinase (IKK)/NF-κB-targeting drugs, focusing on new molecules that target upstream regulators or downstream effectors of oncogenic NF-κB signaling, as well as agents targeting individual NF-κB subunits.

11.
Cancers (Basel) ; 14(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35884618

RESUMO

Acute Myeloid Leukemia (AML) is an aggressive hematological malignancy that relies on highly heterogeneous cytogenetic alterations. Although in the last few years new agents have been developed for AML treatment, the overall survival prospects for AML patients are still gloomy and new therapeutic options are still urgently needed. Constitutive NF-κB activation has been reported in around 40% of AML patients, where it sustains AML cell survival and chemoresistance. Given the central role of NF-κB in AML, targeting the NF-κB pathway represents an attractive strategy to treat AML. This review focuses on current knowledge of NF-κB's roles in AML pathogenesis and summarizes the main therapeutic approaches used to treat NF-κB-driven AML.

12.
Cells ; 11(13)2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35805202

RESUMO

Prostate cancer (PCa) is the second most frequent cancer in men worldwide. NF-κB seems to play a key role in cell survival, proliferation and invasion, sustaining the heterogeneous multifocal nature of PCa. In recent years, the Hedgehog (Hh) signaling pathway has attracted attention as a therapeutic target due to its implication in tumorigenesis and metastasis in several types of cancer, including PCa. Although it is well-known that Sonic Hedgehog (SHh) is a transcriptional target of NF-κB(p65), and that GLI1 is the effector of this crosstalk, the precise role played by this axis in PCa is still not completely clear. Here, we set out to explore the correlation between NF-κB activation and SHh pathways in PCa, investigating if the interplay between NF-κB(p65) and SHh-GLI1 in advanced PCa could be a prospective therapeutic target. Our findings demonstrate that a NF-κB-SHh-GLI1 gene signature is enriched in PCa patients featuring a higher Gleason score. Moreover, elevated levels of this signature are associated with worse prognosis, thus suggesting that this axis could provide a route to treat aggressive PCa.


Assuntos
NF-kappa B , Neoplasias da Próstata , Linhagem Celular Tumoral , Proteínas Hedgehog/metabolismo , Humanos , Masculino , NF-kappa B/metabolismo , Neoplasias da Próstata/patologia , Proteína GLI1 em Dedos de Zinco/genética
13.
Methods Mol Biol ; 2366: 19-25, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34236630

RESUMO

Cell fractionation is a method used to study different cellular events like protein translocation and sequestration by disrupting cells and fractionating their contents, thus allowing an enrichment of the protein of interest. Using different concentrations of sucrose or detergent buffer formulations in combination with centrifugations, the cell fractions are separated based on their density and size.


Assuntos
Fracionamento Celular , NF-kappa B , Frações Subcelulares
14.
Methods Mol Biol ; 2366: 27-42, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34236631

RESUMO

Immunohistochemistry (IHC) is a technique aimed at detecting specific antigens on tissue sections by the use of targeting reagents labeled with reporter molecules. This technique allows a snapshot of the structure of tissue and determines the cellular and subcellular localization of a target antigen. This chapter describes how to identify and localize NF-κB proteins in human tissue using immunohistochemical staining on formalin-fixed paraffin-embedded and frozen tissue.


Assuntos
NF-kappa B/metabolismo , Antígenos , Formaldeído , Humanos , Imuno-Histoquímica , Inclusão em Parafina , Fosforilação , Fixação de Tecidos
15.
Methods Mol Biol ; 2366: 293-303, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34236646

RESUMO

The reprogramming of cell metabolism is a hallmark of cancer. NF-κB transcription factors coordinate the host defense responses to stress, injury, and infection. They also play a central role in oncogenesis, at least in part by regulating cell metabolism and the adaptation to energy stress conditions in various types of cancer, such as colorectal carcinoma (CRC). Here, we describe the XF Cell Mito Stress Test methodology aimed at characterizing the metabolic and bioenergetic profile of CRC cells following the silencing of the essential NF-κB subunit, RelA. This methodology may also be applied to other cancers to reveal novel core vulnerabilities of malignant cells.


Assuntos
Neoplasias Colorretais , Neoplasias Colorretais/metabolismo , Metabolismo Energético , Humanos , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Respiração , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
16.
Methods Mol Biol ; 2366: 343-356, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34236649

RESUMO

Peptides are emerging as an increasingly dependable class of therapeutics in the treatment of cancer and metabolic and cardiovascular diseases, which are all areas of high interest to the pharmaceutical industry. The global market for peptide therapeutics was valued at about 25 billion USD in 2018 and is estimated to reach 57.2 billion USD by the end of 2027. Here, we describe a method for the screening and deconvolution of combinatorial peptide libraries to discover compounds that target discrete signaling components of the NF-κB pathway. Recently, we used this approach to specifically disrupt the interaction between the JNK-activating kinase, MKK7, and the NF-κB-regulated antiapoptotic factor, GADD45ß, in multiple myeloma (MM). We showed that the GADD45ß/MKK7 complex is a functionally critical survival module downstream of NF-κB in MM cells and as such provides an attractive therapeutic target to selectively inhibit NF-κB antiapoptotic signaling in cancer cells. By integrating the library screening and deconvolution methods described here with a rational chemical optimization strategy, we developed the first-in-class GADD45ß/MKK7 inhibitor, DTP3 (a D-tripeptide), which is now being trialed in MM and diffuse large B-cell lymphoma (DLBCL) patients. The same drug discovery approach may be generally applied to therapeutically target other key components of the NF-κB pathway in cancers beyond MM and DLBCL, as well as in non-malignant NF-κB-driven diseases.


Assuntos
Transdução de Sinais , Apoptose , Humanos , Linfoma Difuso de Grandes Células B , Mieloma Múltiplo/tratamento farmacológico , NF-kappa B/metabolismo , Biblioteca de Peptídeos , Peptídeos , Mapeamento de Interação de Proteínas
17.
Genes (Basel) ; 12(11)2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34828332

RESUMO

The detection of circulating microRNA (miRNA)-based biomarkers represents an innovative, non-invasive method for the early detection of cancer. However, the low concentration of miRNAs released in body fluids and the difficult identification of the tumor site have limited their clinical use as effective cancer biomarkers. To evaluate if ultrasound treatment could amplify the release of extracellular cancer biomarkers, we treated a panel of prostate cancer (PCa) cell lines with an ultrasound-based prototype and profiled the release of miRNAs in the extracellular space, with the aim of identifying novel miRNA-based biomarkers that could be used for PCa diagnosis and the monitoring of tumor evolution. We provide evidence that US-mediated sonoporation amplifies the release of miRNAs from both androgen-dependent (AD) and -independent (AI) PCa cells. We identified four PCa-related miRNAs, whose levels in LNCaP and DU145 supernatants were significantly increased following ultrasound treatment: mir-629-5p, mir-374-5p, mir-194-5p, and let-7d-5p. We further analyzed a publicly available dataset of PCa, showing that the serum expression of these novel miRNAs was upregulated in PCa patients compared to controls, thus confirming their clinical relevance. Our findings highlight the potential of using ultrasound to identify novel cell-free miRNAs released from cancer cells, with the aim of developing new biomarkers with diagnostic and predictive value.


Assuntos
Biomarcadores Tumorais/genética , MicroRNA Circulante/genética , Neoplasias da Próstata/genética , Ondas Ultrassônicas/efeitos adversos , Estudos de Casos e Controles , Linhagem Celular Tumoral , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , Células PC-3
18.
Oncogene ; 40(18): 3273-3286, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33846574

RESUMO

We provide evidence that a member of the human Schlafen (SLFN) family of proteins, SLFN5, is overexpressed in human pancreatic ductal adenocarcinoma (PDAC). Targeted deletion of SLFN5 results in decreased PDAC cell proliferation and suppresses PDAC tumorigenesis in in vivo PDAC models. Importantly, high expression levels of SLFN5 correlate with worse outcomes in PDAC patients, implicating SLFN5 in the pathophysiology of PDAC that leads to poor outcomes. Our studies establish novel regulatory effects of SLFN5 on cell cycle progression through binding/blocking of the transcriptional repressor E2F7, promoting transcription of key genes that stimulate S phase progression. Together, our studies suggest an essential role for SLFN5 in PDAC and support the potential for developing new therapeutic approaches for the treatment of pancreatic cancer through SLFN5 targeting.


Assuntos
Neoplasias Pancreáticas , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pancreáticas
19.
J Clin Invest ; 131(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33878036

RESUMO

The ability to adapt to low-nutrient microenvironments is essential for tumor cell survival and progression in solid cancers, such as colorectal carcinoma (CRC). Signaling by the NF-κB transcription factor pathway associates with advanced disease stages and shorter survival in patients with CRC. NF-κB has been shown to drive tumor-promoting inflammation, cancer cell survival, and intestinal epithelial cell (IEC) dedifferentiation in mouse models of CRC. However, whether NF-κB affects the metabolic adaptations that fuel aggressive disease in patients with CRC is unknown. Here, we identified carboxylesterase 1 (CES1) as an essential NF-κB-regulated lipase linking obesity-associated inflammation with fat metabolism and adaptation to energy stress in aggressive CRC. CES1 promoted CRC cell survival via cell-autonomous mechanisms that fuel fatty acid oxidation (FAO) and prevent the toxic build-up of triacylglycerols. We found that elevated CES1 expression correlated with worse outcomes in overweight patients with CRC. Accordingly, NF-κB drove CES1 expression in CRC consensus molecular subtype 4 (CMS4), which is associated with obesity, stemness, and inflammation. CES1 was also upregulated by gene amplifications of its transcriptional regulator HNF4A in CMS2 tumors, reinforcing its clinical relevance as a driver of CRC. This subtype-based distribution and unfavorable prognostic correlation distinguished CES1 from other intracellular triacylglycerol lipases and suggest CES1 could provide a route to treat aggressive CRC.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Neoplasias Colorretais/enzimologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Triglicerídeos/metabolismo , Hidrolases de Éster Carboxílico/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Proteínas de Neoplasias/genética , Triglicerídeos/genética
20.
Cell Death Dis ; 11(3): 210, 2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32231206

RESUMO

Escaping programmed cell death is a hallmark of cancer. NF-κB transcription factors are key regulator of cell survival and aberrant NF-κB signaling has been involved in the pathogenesis of most human malignancies. Although NF-κB is best known for its antiapoptotic role, other processes regulating the life/death balance, such as autophagy and necroptosis, seem to network with NF-κB. This review discusses how the reciprocal regulation of NF-κB, autophagy and programmed cell death affect cancer development and progression.


Assuntos
NF-kappa B/metabolismo , Neoplasias/genética , Autofagia , Humanos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA