Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Transl Med ; 14(626): eabk1707, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34985971

RESUMO

Thrombosis is the leading complication of common human disorders including diabetes, coronary heart disease, and infection and remains a global health burden. Current anticoagulant therapies that target the general clotting cascade are associated with unpredictable adverse bleeding effects, because understanding of hemostasis remains incomplete. Here, using perturbational screening of patient peripheral blood samples for latent phenotypes, we identified dysregulation of the major mechanosensory ion channel Piezo1 in multiple blood lineages in patients with type 2 diabetes mellitus (T2DM). Hyperglycemia activated PIEZO1 transcription in mature blood cells and selected high Piezo1­expressing hematopoietic stem cell clones. Elevated Piezo1 activity in platelets, red blood cells, and neutrophils in T2DM triggered discrete prothrombotic cellular responses. Inhibition of Piezo1 protected against thrombosis both in human blood and in zebrafish genetic models, particularly in hyperglycemia. Our findings identify a candidate target to precisely modulate mechanically induced thrombosis in T2DM and a potential screening method to predict patient-specific risk. Ongoing remodeling of cell lineages in hematopoiesis is an integral component of thrombotic risk in T2DM, and related mechanisms may have a broader role in chronic disease.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Trombose , Animais , Humanos , Hiperglicemia/complicações , Canais Iônicos/metabolismo , Mecanotransdução Celular , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
2.
Circ Genom Precis Med ; 15(4): e003563, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35671065

RESUMO

BACKGROUND: The study of hypertrophic cardiomyopathy (HCM) can yield insight into the mechanisms underlying the complex trait of cardiac hypertrophy. To date, most genetic variants associated with HCM have been found in sarcomeric genes. Here, we describe a novel HCM-associated variant in the noncanonical Wnt signaling interactor WTIP (Wilms tumor interacting protein) and provide evidence of a role for WTIP in complex disease. METHODS: In a family affected by HCM, we used exome sequencing and identity-by-descent analysis to identify a novel variant in WTIP (p.Y233F). We knocked down WTIP in isolated neonatal rat ventricular myocytes with lentivirally delivered short hairpin ribonucleic acids and in Danio rerio via morpholino injection. We performed weighted gene coexpression network analysis for WTIP in human cardiac tissue, as well as association analysis for WTIP variation and left ventricular hypertrophy. Finally, we generated induced pluripotent stem cell-derived cardiomyocytes from patient tissue, characterized size and calcium cycling, and determined the effect of verapamil treatment on calcium dynamics. RESULTS: WTIP knockdown caused hypertrophy in neonatal rat ventricular myocytes and increased cardiac hypertrophy, peak calcium, and resting calcium in D rerio. Network analysis of human cardiac tissue indicated WTIP as a central coordinator of prohypertrophic networks, while common variation at the WTIP locus was associated with human left ventricular hypertrophy. Patient-derived WTIP p.Y233F-induced pluripotent stem cell-derived cardiomyocytes recapitulated cellular hypertrophy and increased resting calcium, which was ameliorated by verapamil. CONCLUSIONS: We demonstrate that a novel genetic variant found in a family with HCM disrupts binding to a known Wnt signaling protein, misregulating cardiomyocyte calcium dynamics. Further, in orthogonal model systems, we show that expression of the gene WTIP is important in complex cardiac hypertrophy phenotypes. These findings, derived from the observation of a rare Mendelian disease variant, uncover a novel disease mechanism with implications across diverse forms of cardiac hypertrophy.


Assuntos
Proteínas Correpressoras/metabolismo , Proteínas do Citoesqueleto/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Animais , Cálcio/metabolismo , Cardiomegalia/metabolismo , Cardiomiopatia Hipertrófica/metabolismo , Humanos , Ratos , Verapamil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA