Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36837354

RESUMO

Recycled construction and demolition (C&D) wastes have been pointed out as a feasible alternative to traditional backfill materials of geosynthetic-reinforced structures, but the current knowledge about the interface behaviour between these unconventional (recycled) materials and the reinforcement is still limited, particularly as far as the time-dependent response is concerned. In this study, a series of large-scale direct shear tests was conducted using an innovative multistage method to evaluate the influence of shear creep loading on the direct shear response of the interfaces between a fine-grained C&D material and two different geosynthetic reinforcements (high-strength geotextile and geogrid). The peak and large-displacement interface shear strength parameters obtained from tests involving sustained loading were compared with those from conventional interface tests. Test results have shown that the shear creep deformation of the interfaces increased with the magnitude of sustained loading. The test specimens experienced additional vertical contraction during the creep stage, which tended to increase with the applied normal stress. For the recycled C&D material-geotextile interface, the sustained loading induced a reduction in the apparent cohesion and a slight increase in the friction angle, when compared to the values estimated from conventional tests. In turn, for the geogrid interface, the apparent cohesion values increased, whereas the friction angle did not significantly change upon shear creep loading.

2.
Materials (Basel) ; 14(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199754

RESUMO

Geosynthetic-reinforced soil structures have been used extensively in recent decades due to their significant advantages over more conventional earth retaining structures, including the cost-effectiveness, reduced construction time, and possibility of using locally-available lower quality soils and/or waste materials, such as recycled construction and demolition (C&D) wastes. The time-dependent shear behaviour at the interfaces between the geosynthetic and the backfill is an important factor affecting the overall long-term performance of such structures, and thereby should be properly understood. In this study, an innovative multistage direct shear test procedure is introduced to characterise the time-dependent response of the interface between a high-strength geotextile and a recycled C&D material. After a prescribed shear displacement is reached, the shear box is kept stationary for a specific period of time, after which the test proceeds again, at a constant displacement rate, until the peak and large-displacement shear strengths are mobilised. The shear stress-shear displacement curves from the proposed multistage tests exhibited a progressive decrease in shear stress with time (stress relaxation) during the period in which the shear box was restrained from any movement, which was more pronounced under lower normal stress values. Regardless of the prior interface shear displacement and duration of the stress relaxation stage, the peak and residual shear strength parameters of the C&D material-geotextile interface remained similar to those obtained from the conventional (benchmark) tests carried out under constant displacement rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA