Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 169(4): 750-765.e17, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475900

RESUMO

To guide the design of immunotherapy strategies for patients with early stage lung tumors, we developed a multiscale immune profiling strategy to map the immune landscape of early lung adenocarcinoma lesions to search for tumor-driven immune changes. Utilizing a barcoding method that allows a simultaneous single-cell analysis of the tumor, non-involved lung, and blood cells, we provide a detailed immune cell atlas of early lung tumors. We show that stage I lung adenocarcinoma lesions already harbor significantly altered T cell and NK cell compartments. Moreover, we identified changes in tumor-infiltrating myeloid cell (TIM) subsets that likely compromise anti-tumor T cell immunity. Paired single-cell analyses thus offer valuable knowledge of tumor-driven immune changes, providing a powerful tool for the rational design of immune therapies. VIDEO ABSTRACT.


Assuntos
Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Imunidade Inata , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Análise de Célula Única/métodos , Adenocarcinoma de Pulmão , Células Dendríticas/patologia , Humanos , Células Matadoras Naturais/patologia , Macrófagos/patologia , Linfócitos T/patologia , Microambiente Tumoral
2.
J Infect Dis ; 225(11): 2011-2022, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34718641

RESUMO

BACKGROUND: Plasmodium falciparum-infected red blood cells (iRBCs) bind and sequester in deep vascular beds, causing malaria-related disease and death. In pregnant women, VAR2CSA binds to chondroitin sulfate A (CSA) and mediates placental sequestration, making it the major placental malaria (PM) vaccine target. METHODS: In this study, we characterize an invariant protein associated with PM called P falciparum chondroitin sulfate A ligand (PfCSA-L). RESULTS: Recombinant PfCSA-L binds both placental CSA and VAR2CSA with nanomolar affinity, and it is coexpressed on the iRBC surface with VAR2CSA. Unlike VAR2CSA, which is anchored by a transmembrane domain, PfCSA-L is peripherally associated with the outer surface of knobs through high-affinity protein-protein interactions with VAR2CSA. This suggests that iRBC sequestration involves complexes of invariant and variant surface proteins, allowing parasites to maintain both diversity and function at the iRBC surface. CONCLUSIONS: The PfCSA-L is a promising target for intervention because it is well conserved, exposed on infected cells, and expressed and localized with VAR2CSA.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Anticorpos Antiprotozoários , Antígenos de Protozoários , Sulfatos de Condroitina , Eritrócitos/parasitologia , Feminino , Humanos , Malária/prevenção & controle , Malária Falciparum/parasitologia , Placenta/parasitologia , Plasmodium falciparum , Gravidez
3.
Br J Haematol ; 199(4): 520-528, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36041779

RESUMO

We investigated antibody and coronavirus disease 2019 (COVID-19)-specific T-cell mediated responses via ultra-deep immunosequencing of the T-cell receptor (TCR) repertoire in patients with plasma cell dyscrasias (PCD). We identified 364 patients with PCD who underwent spike antibody testing using commercially available spike-receptor binding domain immunoglobulin G antibodies ≥2 weeks after completion of the initial two doses of mRNA vaccines or one dose of JNJ-78436735. A total of 56 patients underwent TCR immunosequencing after vaccination. Overall, 86% tested within 6 months of vaccination had detectable spike antibodies. Increasing age, use of anti-CD38 or anti-B-cell maturation antigen therapy, and receipt of BNT162b2 (vs. mRNA-1273) were associated with lower antibody titres. We observed an increased proportion of TCRs associated with surface glycoprotein regions of the COVID-19 genome after vaccination, consistent with spike-specific T-cell responses. The median spike-specific T-cell breadth was 3.11 × 10-5 , comparable to those in healthy populations after vaccination. Although spike-specific T-cell breadth correlated with antibody titres, patients without antibody responses also demonstrated spike-specific T-cell responses. Patients receiving mRNA-1273 had higher median spike-specific T-cell breadth than those receiving BNT162b2 (p = 0.01). Although patients with PCD are often immunocompromised due to underlying disease and treatments, COVID-19 vaccination can still elicit humoral and T-cell responses and remain an important intervention in this patient population.


Assuntos
COVID-19 , Paraproteinemias , Humanos , COVID-19/prevenção & controle , Linfócitos T , Vacinas contra COVID-19 , Ad26COVS1 , Vacina BNT162 , Vacinação , Anticorpos , Receptores de Antígenos de Linfócitos T , Anticorpos Antivirais
4.
J Immunol ; 202(2): 476-483, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30541882

RESUMO

With age, the immune system becomes less effective, causing increased susceptibility to infection. Chronic CMV infection further impairs immune function and is associated with increased mortality in the elderly. CMV exposure elicits massive CD8+ T cell clonal expansions and diminishes the cytotoxic T cell response to subsequent infections, leading to the hypothesis that to maintain homeostasis, T cell clones are expelled from the repertoire, reducing T cell repertoire diversity and diminishing the ability to combat new infections. However, in humans, the impact of CMV infection on the structure and diversity of the underlying T cell repertoire remains uncharacterized. Using TCR ß-chain immunosequencing, we observed that the proportion of the peripheral blood T cell repertoire composed of the most numerous 0.1% of clones is larger in the CMV seropositive and gradually increases with age. We found that the T cell repertoire in the elderly grows to accommodate CMV-driven clonal expansions while preserving its underlying diversity and clonal structure. Our observations suggest that the maintenance of large CMV-reactive T cell clones throughout life does not compromise the underlying repertoire. Alternatively, we propose that the diminished immunity in elderly individuals with CMV is due to alterations in cellular function rather than a reduction in CD8+ T cell repertoire diversity.


Assuntos
Envelhecimento/fisiologia , Linfócitos T CD8-Positivos/imunologia , Citomegalovirus/imunologia , Citomegalovirus/fisiologia , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Linfócitos T Citotóxicos/imunologia , Idoso , Idoso de 80 Anos ou mais , Proliferação de Células , Senescência Celular , Seleção Clonal Mediada por Antígeno , Células Clonais , Estudos de Coortes , Infecções por Citomegalovirus/imunologia , Humanos , Tolerância Imunológica
5.
PLoS Med ; 17(9): e1003292, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32970670

RESUMO

BACKGROUND: Identifying stage II patients with colorectal cancer (CRC) at higher risk of progression is a clinical priority in order to optimize the advantages of adjuvant chemotherapy while avoiding unnecessary toxicity. Recently, the intensity and the quality of the host immune response in the tumor microenvironment have been reported to have an important role in tumorigenesis and an inverse association with tumor progression. This association is well established in microsatellite instable CRC. In this work, we aim to assess the usefulness of measures of T-cell infiltration as prognostic biomarkers in 640 stage II, CRC tumors, 582 of them confirmed microsatellite stable. METHODS AND FINDINGS: We measured both the quantity and clonality index of T cells by means of T-cell receptor (TCR) immunosequencing in a discovery dataset (95 patients with colon cancer diagnosed at stage II and microsatellite stable, median age 67, 30% women) and replicated the results in 3 additional series of stage II patients from 2 countries. Series 1 and 2 were recruited in Barcelona, Spain and included 112 fresh frozen (FF, median age 69, 44% women) and 163 formalin-fixed paraffin-embedded (FFPE, median age 67, 39% women) samples, respectively. Series 3 included 270 FFPE samples from patients recruited in Haifa, Northern Israel, as part of a large case-control study of CRC (median age 73, 46% women). Median follow-up time was 81.1 months. Cox regression models were fitted to evaluate the prognostic value of T-cell abundance and Simpson clonality of TCR variants adjusting by sex, age, tumor location, and stage (IIA and IIB). In the discovery dataset, higher TCR abundance was associated with better prognosis (hazard ratio [HR] for ≥Q1 = 0.25, 95% CI 0.10-0.63, P = 0.003). A functional analysis of gene expression on these tumors revealed enrichment in pathways related to immune response. Higher values of clonality index (lower diversity) were not associated with worse disease-free survival, though the HR for ≥Q3 was 2.32 (95% CI 0.90-5.97, P = 0.08). These results were replicated in an independent FF dataset (TCR abundance: HR = 0.30, 95% CI 0.12-0.72, P = 0.007; clonality: HR = 3.32, 95% CI 1.38-7.94, P = 0.007). Also, the association with prognosis was tested in 2 independent FFPE datasets. The same association was observed with TCR abundance (HR = 0.41, 95% CI 0.18-0.93, P = 0.03 and HR = 0.56, 95% CI 0.31-1, P = 0.042, respectively, for each FFPE dataset). However, the clonality index was associated with prognosis only in the FFPE dataset from Israel (HR = 2.45, 95% CI 1.39-4.32, P = 0.002). Finally, a combined analysis combining all microsatellite stable (MSS) samples demonstrated a clear prognosis value both for TCR abundance (HR = 0.39, 95% CI 0.26-0.57, P = 1.3e-06) and the clonality index (HR = 2.13, 95% CI 1.44-3.15, P = 0.0002). These associations were also observed when variables were considered continuous in the models (HR per log2 of TCR abundance = 0.85, 95% CI 0.78-0.93, P = 0.0002; HR per log2 or clonality index = 1.16, 95% CI 1.03-1.31, P = 0.016). LIMITATIONS: This is a retrospective study, and samples had been preserved with different methods. Validation series lack complete information about microsatellite instability (MSI) status and pathology assessment. The Molecular Epidemiology of Colorectal Cancer (MECC) study had information about overall survival instead of progression-free survival. CONCLUSION: Results from this study demonstrate that tumor lymphocytes, assessed by TCR repertoire quantification based on a sequencing method, are an independent prognostic factor in microsatellite stable stage II CRC.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Repetições de Microssatélites/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Estudos de Casos e Controles , Quimioterapia Adjuvante , Neoplasias Colorretais/metabolismo , Progressão da Doença , Intervalo Livre de Doença , Feminino , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Instabilidade de Microssatélites , Repetições de Microssatélites/imunologia , Pessoa de Meia-Idade , Mutação , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Espanha , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
6.
BMC Cancer ; 20(1): 612, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32605647

RESUMO

BACKGROUND: The clonoSEQ® Assay (Adaptive Biotechnologies Corporation, Seattle, USA) identifies and tracks unique disease-associated immunoglobulin (Ig) sequences by next-generation sequencing of IgH, IgK, and IgL rearrangements and IgH-BCL1/2 translocations in malignant B cells. Here, we describe studies to validate the analytical performance of the assay using patient samples and cell lines. METHODS: Sensitivity and specificity were established by defining the limit of detection (LoD), limit of quantitation (LoQ) and limit of blank (LoB) in genomic DNA (gDNA) from 66 patients with multiple myeloma (MM), acute lymphoblastic leukemia (ALL), or chronic lymphocytic leukemia (CLL), and three cell lines. Healthy donor gDNA was used as a diluent to contrive samples with specific DNA masses and malignant-cell frequencies. Precision was validated using a range of samples contrived from patient gDNA, healthy donor gDNA, and 9 cell lines to generate measurable residual disease (MRD) frequencies spanning clinically relevant thresholds. Linearity was determined using samples contrived from cell line gDNA spiked into healthy gDNA to generate 11 MRD frequencies for each DNA input, then confirmed using clinical samples. Quantitation accuracy was assessed by (1) comparing clonoSEQ and multiparametric flow cytometry (mpFC) measurements of ALL and MM cell lines diluted in healthy mononuclear cells, and (2) analyzing precision study data for bias between clonoSEQ MRD results in diluted gDNA and those expected from mpFC based on original, undiluted samples. Repeatability of nucleotide base calls was assessed via the assay's ability to recover malignant clonotype sequences across several replicates, process features, and MRD levels. RESULTS: LoD and LoQ were estimated at 1.903 cells and 2.390 malignant cells, respectively. LoB was zero in healthy donor gDNA. Precision ranged from 18% CV (coefficient of variation) at higher DNA inputs to 68% CV near the LoD. Variance component analysis showed MRD results were robust, with expected laboratory process variations contributing ≤3% CV. Linearity and accuracy were demonstrated for each disease across orders of magnitude of clonal frequencies. Nucleotide sequence error rates were extremely low. CONCLUSIONS: These studies validate the analytical performance of the clonoSEQ Assay and demonstrate its potential as a highly sensitive diagnostic tool for selected lymphoid malignancies.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Leucemia Linfocítica Crônica de Células B/diagnóstico , Mieloma Múltiplo/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Kit de Reagentes para Diagnóstico , Medula Óssea/patologia , Ciclina D1/genética , Rearranjo Gênico , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias lambda de Imunoglobulina/genética , Imunoglobulinas/genética , Leucemia Linfocítica Crônica de Células B/sangue , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/terapia , Limite de Detecção , Mieloma Múltiplo/sangue , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangue , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Translocação Genética
7.
J Immunol ; 201(3): 888-896, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29914888

RESUMO

Human T cells that recognize lipid Ags presented by highly conserved CD1 proteins often express semi-invariant TCRs, but the true diversity of lipid Ag-specific TCRs remains unknown. We use CD1b tetramers and high-throughput immunosequencing to analyze thousands of TCRs from ex vivo-sorted or in vitro-expanded T cells specific for the mycobacterial lipid Ag, glucose monomycolate. Our results reveal a surprisingly diverse repertoire resulting from editing of germline-encoded gene rearrangements analogous to MHC-restricted TCRs. We used a distance-based metric (TCRDist) to show how this diverse TCR repertoire builds upon previously reported conserved motifs by including subject-specific TCRs. In a South African cohort, we show that TCRDist can identify clonal expansion of diverse glucose monomycolate-specific TCRs and accurately distinguish patients with active tuberculosis from control subjects. These data suggest that similar mechanisms govern the selection and expansion of peptide and lipid Ag-specific T cells despite the nonpolymorphic nature of CD1.


Assuntos
Antígenos CD1/imunologia , Lipídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Tuberculose/imunologia , Adolescente , Linhagem Celular Tumoral , Células Cultivadas , Criança , Feminino , Humanos , Células K562 , Masculino , Mycobacterium/imunologia , Linfócitos T
8.
J Immunol ; 198(4): 1740-1747, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28077600

RESUMO

The Bruton's tyrosine kinase inhibitor ibrutinib is a highly effective, new targeted therapy for chronic lymphocytic leukemia (CLL) that thwarts leukemia cell survival, growth, and tissue homing. The effects of ibrutinib treatment on the T cell compartment, which is clonally expanded and thought to support the growth of malignant B cells in CLL, are not fully characterized. Using next-generation sequencing technology, we characterized the diversity of TCRß-chains in peripheral blood T cells from 15 CLL patients before and after 1 y of ibrutinib therapy. We noted elevated CD4+ and CD8+ T cell numbers and a restricted TCRß repertoire in all pretreatment samples. After 1 y of ibrutinib therapy, elevated peripheral blood T cell numbers and T cell-related cytokine levels had normalized, and T cell repertoire diversity increased significantly. Dominant TCRß clones in pretreatment samples declined or became undetectable, and the number of productive unique clones increased significantly during ibrutinib therapy, with the emergence of large numbers of low-frequency TCRß clones. Importantly, broader TCR repertoire diversity was associated with clinical efficacy and lower rates of infections during ibrutinib therapy. These data demonstrate that ibrutinib therapy increases diversification of the T cell compartment in CLL patients, which contributes to cellular immune reconstitution.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Adenina/análogos & derivados , Idoso , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/fisiologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Citocinas/genética , Citocinas/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Piperidinas , Proteínas Tirosina Quinases , Pirazóis/efeitos adversos , Pirazóis/imunologia , Pirimidinas/efeitos adversos , Pirimidinas/imunologia
9.
Proc Natl Acad Sci U S A ; 113(42): 11919-11924, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27698113

RESUMO

Immune checkpoint therapies, such as ipilimumab, induce dramatic antitumor responses in a subset of patients with advanced malignancies, but they may also induce inflammatory responses and toxicities termed immune-related adverse events (irAEs). These irAEs are often low grade and manageable, but severe irAEs may lead to prolonged hospitalizations or fatalities. Early intervention is necessary to minimize morbidities that occur with severe irAEs. However, correlative biomarkers are currently lacking. In a phase II clinical trial that treated 27 patients with metastatic prostate cancer, we aimed to test the safety and efficacy of androgen deprivation therapy plus ipilimumab. In this study, we observed grade 3 toxicities in >40% of treated patients, which led to early closure of the study. Because ipilimumab enhances T-cell responses, we hypothesized that increased clonal T-cell responses in the systemic circulation may contribute to irAEs. Sequencing of the T-cell receptor ß-chains in purified T cells revealed clonal expansion of CD8 T cells, which occurred in blood samples collected before the onset of grade 2-3 irAEs. These initial results suggested that expansion of ≥55 CD8 T-cell clones preceded the development of severe irAEs. We further evaluated available blood samples from a second trial and determined that patients who experienced grade 2-3 irAEs also had expansion of ≥55 CD8 T-cell clones in blood samples collected before the onset of irAEs. We propose that CD8 T-cell clonal expansion may be a correlative biomarker to enable close monitoring and early intervention for patients receiving ipilimumab.


Assuntos
Antineoplásicos Imunológicos/efeitos adversos , Linfócitos T CD8-Positivos/imunologia , Evolução Clonal/imunologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Ipilimumab/efeitos adversos , Contagem de Linfócitos , Antineoplásicos Imunológicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores , Linfócitos T CD8-Positivos/metabolismo , Ensaios Clínicos Fase II como Assunto , Suscetibilidade a Doenças , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Humanos , Ipilimumab/uso terapêutico , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/complicações , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Índice de Gravidade de Doença , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Resultado do Tratamento
10.
PLoS Med ; 14(5): e1002309, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28552987

RESUMO

BACKGROUND: Inhibition of programmed death-ligand 1 (PD-L1) with atezolizumab can induce durable clinical benefit (DCB) in patients with metastatic urothelial cancers, including complete remissions in patients with chemotherapy refractory disease. Although mutation load and PD-L1 immune cell (IC) staining have been associated with response, they lack sufficient sensitivity and specificity for clinical use. Thus, there is a need to evaluate the peripheral blood immune environment and to conduct detailed analyses of mutation load, predicted neoantigens, and immune cellular infiltration in tumors to enhance our understanding of the biologic underpinnings of response and resistance. METHODS AND FINDINGS: The goals of this study were to (1) evaluate the association of mutation load and predicted neoantigen load with therapeutic benefit and (2) determine whether intratumoral and peripheral blood T cell receptor (TCR) clonality inform clinical outcomes in urothelial carcinoma treated with atezolizumab. We hypothesized that an elevated mutation load in combination with T cell clonal dominance among intratumoral lymphocytes prior to treatment or among peripheral T cells after treatment would be associated with effective tumor control upon treatment with anti-PD-L1 therapy. We performed whole exome sequencing (WES), RNA sequencing (RNA-seq), and T cell receptor sequencing (TCR-seq) of pretreatment tumor samples as well as TCR-seq of matched, serially collected peripheral blood, collected before and after treatment with atezolizumab. These parameters were assessed for correlation with DCB (defined as progression-free survival [PFS] >6 months), PFS, and overall survival (OS), both alone and in the context of clinical and intratumoral parameters known to be predictive of survival in this disease state. Patients with DCB displayed a higher proportion of tumor-infiltrating T lymphocytes (TIL) (n = 24, Mann-Whitney p = 0.047). Pretreatment peripheral blood TCR clonality below the median was associated with improved PFS (n = 29, log-rank p = 0.048) and OS (n = 29, log-rank p = 0.011). Patients with DCB also demonstrated more substantial expansion of tumor-associated TCR clones in the peripheral blood 3 weeks after starting treatment (n = 22, Mann-Whitney p = 0.022). The combination of high pretreatment peripheral blood TCR clonality with elevated PD-L1 IC staining in tumor tissue was strongly associated with poor clinical outcomes (n = 10, hazard ratio (HR) (mean) = 89.88, HR (median) = 23.41, 95% CI [2.43, 506.94], p(HR > 1) = 0.0014). Marked variations in mutation loads were seen with different somatic variant calling methodologies, which, in turn, impacted associations with clinical outcomes. Missense mutation load, predicted neoantigen load, and expressed neoantigen load did not demonstrate significant association with DCB (n = 25, Mann-Whitney p = 0.22, n = 25, Mann-Whitney p = 0.55, and n = 25, Mann-Whitney p = 0.29, respectively). Instead, we found evidence of time-varying effects of somatic mutation load on PFS in this cohort (n = 25, p = 0.044). A limitation of our study is its small sample size (n = 29), a subset of the patients treated on IMvigor 210 (NCT02108652). Given the number of exploratory analyses performed, we intend for these results to be hypothesis-generating. CONCLUSIONS: These results demonstrate the complex nature of immune response to checkpoint blockade and the compelling need for greater interrogation and data integration of both host and tumor factors. Incorporating these variables in prospective studies will facilitate identification and treatment of resistant patients.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Carcinoma/prevenção & controle , Neoplasias Urológicas/prevenção & controle , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados , Antígeno B7-H1/imunologia , Carcinoma/etiologia , Carcinoma/imunologia , Exoma/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T/genética , Análise de Sequência de RNA , Neoplasias Urológicas/etiologia , Neoplasias Urológicas/imunologia , Urotélio/patologia
11.
Cancer ; 123(17): 3291-3304, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28463396

RESUMO

BACKGROUND: Patients with metastatic sarcomas have poor outcomes and although the disease may be amenable to immunotherapies, information regarding the immunologic profiles of soft tissue sarcoma (STS) subtypes is limited. METHODS: The authors identified patients with the common STS subtypes: leiomyosarcoma, undifferentiated pleomorphic sarcoma (UPS), synovial sarcoma (SS), well-differentiated/dedifferentiated liposarcoma, and myxoid/round cell liposarcoma. Gene expression, immunohistochemistry for programmed cell death protein (PD-1) and programmed death-ligand 1 (PD-L1), and T-cell receptor Vß gene sequencing were performed on formalin-fixed, paraffin-embedded tumors from 81 patients. Differences in liposarcoma subsets also were evaluated. RESULTS: UPS and leiomyosarcoma had high expression levels of genes related to antigen presentation and T-cell infiltration. UPS were found to have higher levels of PD-L1 (P≤.001) and PD-1 (P≤.05) on immunohistochemistry and had the highest T-cell infiltration based on T-cell receptor sequencing, significantly more than SS, which had the lowest (P≤.05). T-cell infiltrates in UPS also were more oligoclonal compared with SS and liposarcoma (P≤.05). A model adjusted for STS histologic subtype found that for all sarcomas, T-cell infiltration and clonality were highly correlated with PD-1 and PD-L1 expression levels (P≤.01). CONCLUSIONS: In the current study, the authors provide the most detailed overview of the immune microenvironment in sarcoma subtypes to date. UPS, which is a more highly mutated STS subtype, provokes a substantial immune response, suggesting that it may be well suited to treatment with immune checkpoint inhibitors. The SS and liposarcoma subsets are less mutated but do express immunogenic self-antigens, and therefore strategies to improve antigen presentation and T-cell infiltration may allow for successful immunotherapy in patients with these diagnoses. Cancer 2017;123:3291-304. © 2017 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.


Assuntos
Receptor de Morte Celular Programada 1/genética , Sarcoma/genética , Sarcoma/mortalidade , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/mortalidade , Linfócitos T/citologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise de Variância , Biópsia por Agulha , Células Clonais , Análise por Conglomerados , Estudos de Coortes , Terapia Combinada , Bases de Dados Factuais , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Estadiamento de Neoplasias , Prognóstico , Estudos Retrospectivos , Sarcoma/patologia , Sarcoma/terapia , Neoplasias de Tecidos Moles/patologia , Neoplasias de Tecidos Moles/terapia , Análise de Sobrevida , Linfócitos T/imunologia , Adulto Jovem
12.
J Virol ; 89(8): 4517-26, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25653453

RESUMO

UNLABELLED: A detailed characterization of the dynamics and breadth of the immune response to an acute viral infection, as well as the determinants of recruitment to immunological memory, can greatly contribute to our basic understanding of the mechanics of the human immune system and can ultimately guide the design of effective vaccines. In addition to neutralizing antibodies, T cells have been shown to be critical for the effective resolution of acute viral infections. We report the first in-depth analysis of the dynamics of the CD8(+) T cell repertoire at the level of individual T cell clonal lineages upon vaccination of human volunteers with a single dose of YF-17D. This live attenuated yellow fever virus vaccine yields sterile, long-term immunity and has been previously used as a model to understand the immune response to a controlled acute viral infection. We identified and enumerated unique CD8(+) T cell clones specifically induced by this vaccine through a combined experimental and statistical approach that included high-throughput sequencing of the CDR3 variable region of the T cell receptor ß-chain and an algorithm that detected significantly expanded T cell clones. This allowed us to establish that (i) on average, ∼ 2,000 CD8(+) T cell clones were induced by YF-17D, (ii) 5 to 6% of the responding clones were recruited to long-term memory 3 months postvaccination, (iii) the most highly expanded effector clones were preferentially recruited to the memory compartment, and (iv) a fraction of the YF-17D-induced clones could be identified from peripheral blood lymphocytes solely by measuring clonal expansion. IMPORTANCE: The exhaustive investigation of pathogen-induced effector T cells is essential to accurately quantify the dynamics of the human immune response. The yellow fever vaccine (YFV) has been broadly used as a model to understand how a controlled, self-resolving acute viral infection induces an effective and long-term protective immune response. Here, we extend this previous work by reporting the identity of activated effector T cell clones that expand in response to the YFV 2 weeks postvaccination (as defined by their unique T cell receptor gene sequence) and by tracking clones that enter the memory compartment 3 months postvaccination. This is the first study to use high-throughput sequencing of immune cells to characterize the breadth of the antiviral effector cell response and to determine the contribution of unique virus-induced clones to the long-lived memory T cell repertoire. Thus, this study establishes a benchmark against which future vaccines can be compared to predict their efficacy.


Assuntos
Linhagem da Célula/imunologia , Memória Imunológica/imunologia , Linfócitos T Citotóxicos/imunologia , Vacinas Atenuadas/farmacologia , Vacinas Virais/farmacologia , Vírus da Febre Amarela/imunologia , Sequência de Bases , Citometria de Fluxo , Humanos , Dados de Sequência Molecular , Análise de Sequência de DNA , Vacinas Atenuadas/administração & dosagem , Vacinas Virais/administração & dosagem , Washington
13.
J Immunol ; 193(3): 1268-77, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24958899

RESUMO

Sterile protection against malaria infection can be achieved through vaccination of mice and humans with whole Plasmodium spp. parasites. One such method, known as infection-treatment-vaccination (ITV), involves immunization with wild type sporozoites (spz) under drug coverage. In this work, we used the different effects of antimalarial drugs chloroquine (CQ) and artesunate (AS) on blood stage (BS) parasites to dissect the stage-specific immune responses in mice immunized with Plasmodium yoelii spz under either drug, as well as their ability to protect mice against challenge with spz or infected RBCs (iRBCs). Whereas CQ-ITV induced sterile protection against challenge with both spz and iRBCs, AS-ITV only induced sterile protection against spz challenge. Importantly, AS-ITV delayed the onset of BS infection, indicating that both regimens induced cross-stage immunity. Moreover, both CQ- and AS-ITV induced CD8(+) T cells in the liver that eliminated malaria-infected hepatocytes in vitro, as well as Abs that recognized pre-erythrocytic parasites. Sera from both groups of mice inhibited spz invasion of hepatocytes in vitro, but only CQ-ITV induced high levels of anti-BS Abs. Finally, passive transfer of sera from CQ-ITV-treated mice delayed the onset of erythrocytic infection in the majority of mice challenged with P. yoelii iRBCs. Besides constituting the first characterization, to our knowledge, of AS-ITV as a vaccination strategy, our data show that ITV strategies that lead to subtle differences in the persistence of parasites in the blood enable the characterization of the resulting immune responses, which will contribute to future research in vaccine design and malaria interventions.


Assuntos
Artemisininas/administração & dosagem , Cloroquina/administração & dosagem , Eritrócitos/imunologia , Eritrócitos/parasitologia , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Malária/imunologia , Plasmodium yoelii/imunologia , Animais , Anopheles/imunologia , Anticorpos Antiprotozoários/biossíntese , Anticorpos Antiprotozoários/sangue , Antimaláricos/administração & dosagem , Antimaláricos/uso terapêutico , Artemisia/imunologia , Artemisininas/uso terapêutico , Artesunato , Cloroquina/uso terapêutico , Eritrócitos/efeitos dos fármacos , Feminino , Malária/sangue , Malária/prevenção & controle , Vacinas Antimaláricas/sangue , Camundongos , Camundongos Endogâmicos BALB C , Fitoterapia/métodos , Plasmodium yoelii/efeitos dos fármacos , Esporozoítos/efeitos dos fármacos , Esporozoítos/imunologia , Esporozoítos/transplante , Fatores de Tempo , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/uso terapêutico
14.
Mol Cell Proteomics ; 13(10): 2646-60, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25023128

RESUMO

Malaria remains one of the most prevalent and lethal human infectious diseases worldwide. A comprehensive characterization of antibody responses to blood stage malaria is essential to support the development of future vaccines, sero-diagnostic tests, and sero-surveillance methods. We constructed a proteome array containing 4441 recombinant proteins expressed by the blood stages of the two most common human malaria parasites, P. falciparum (Pf) and P. vivax (Pv), and used this array to screen sera of Papua New Guinea children infected with Pf, Pv, or both (Pf/Pv) that were either symptomatic (febrile), or asymptomatic but had parasitemia detectable via microscopy or PCR. We hypothesized that asymptomatic children would develop antigen-specific antibody profiles associated with antidisease immunity, as compared with symptomatic children. The sera from these children recognized hundreds of the arrayed recombinant Pf and Pv proteins. In general, responses in asymptomatic children were highest in those with high parasitemia, suggesting that antibody levels are associated with parasite burden. In contrast, symptomatic children carried fewer antibodies than asymptomatic children with infections detectable by microscopy, particularly in Pv and Pf/Pv groups, suggesting that antibody production may be impaired during symptomatic infections. We used machine-learning algorithms to investigate the relationship between antibody responses and symptoms, and we identified antibody responses to sets of Plasmodium proteins that could predict clinical status of the donors. Several of these antibody responses were identified by multiple comparisons, including those against members of the serine enriched repeat antigen family and merozoite protein 4. Interestingly, both P. falciparum serine enriched repeat antigen-5 and merozoite protein 4 have been previously investigated for use in vaccines. This machine learning approach, never previously applied to proteome arrays, can be used to generate a list of potential seroprotective and/or diagnostic antigens candidates that can be further evaluated in longitudinal studies.


Assuntos
Malária Falciparum/imunologia , Malária Vivax/imunologia , Análise Serial de Proteínas/métodos , Proteínas de Protozoários/análise , Inteligência Artificial , Criança , Pré-Escolar , Humanos , Lactente , Malária Falciparum/parasitologia , Malária Falciparum/patologia , Malária Vivax/parasitologia , Malária Vivax/patologia , Nova Guiné , Plasmodium falciparum/imunologia , Plasmodium falciparum/metabolismo , Plasmodium vivax/imunologia , Plasmodium vivax/metabolismo , Proteínas de Protozoários/imunologia
15.
Cell Microbiol ; 16(5): 602-11, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24506682

RESUMO

Forty percent of people worldwide are at risk of malaria infection, and despite control efforts it remains the most deadly parasitic disease. Unfortunately, rapid discovery and development of new interventions for malaria are hindered by the lack of small animal models that support the complex life cycles of the main parasite species infecting humans. Such tools must accommodate human parasite tropism for human tissue. Mouse models with human tissue developed to date have already enhanced our knowledge of human parasites, and are useful tools for assessing anti-parasitic interventions. Although these systems are imperfect, their continued refinement will likely broaden their utility. Some of the malaria parasite's interactions with human hepatocytes and human erythrocytes can already be modelled with available humanized mouse systems. However, interactions with other relevant human tissues such as the skin and immune system, as well as most transitions between life cycle stages in vivo will require refinement of existing humanized mouse models. Here, we review the recent successes achieved in modelling human malaria parasite biology in humanized mice, and discuss how these models have potential to become a valuable part of the toolbox used for understanding the biology of, and development of interventions to, malaria.


Assuntos
Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Malária/patologia , Malária/parasitologia , Camundongos SCID , Plasmodium/imunologia , Plasmodium/fisiologia , Animais , Humanos , Masculino
16.
Infect Immun ; 82(12): 5143-53, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25267837

RESUMO

Understanding protective immunity to malaria is essential for the design of an effective vaccine to prevent the large number of infections and deaths caused by this parasitic disease. To date, whole-parasite immunization with attenuated parasites is the most effective method to confer sterile protection against malaria infection in clinical trials. Mouse model studies have highlighted the essential role that CD8(+) T cells play in protection against preerythrocytic stages of malaria; however, there is mounting evidence that antibodies are also important in these stages. Here, we show that experimental immunization of mice with Plasmodium yoelii fabb/f(-) (Pyfabb/f(-)), a genetically attenuated rodent malaria parasite that arrests late in the liver stage, induced functional antibodies that inhibited hepatocyte invasion in vitro and reduced liver-stage burden in vivo. These antibodies were sufficient to induce sterile protection from challenge by P. yoelii sporozoites in the absence of T cells in 50% of mice when sporozoites were administered by mosquito bite but not when they were administered by intravenous injection. Moreover, among mice challenged by mosquito bite, a higher proportion of BALB/c mice than C57BL/6 mice developed sterile protection (62.5% and 37.5%, respectively). Analysis of the antibody isotypes induced by immunization with Pyfabb/f(-) showed that, overall, BALB/c mice developed an IgG1-biased response, whereas C57BL/6 mice developed an IgG2b/c-biased response. Our data demonstrate for the first time that antibodies induced by experimental immunization of mice with a genetically attenuated rodent parasite play a protective role during the preerythrocytic stages of malaria. Furthermore, they highlight the importance of considering both the route of challenge and the genetic background of the mouse strains used when interpreting vaccine efficacy studies in animal models of malaria infection.


Assuntos
Anticorpos Antiprotozoários/sangue , Imunização/métodos , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Plasmodium yoelii/imunologia , Experimentação Animal , Animais , Feminino , Imunoglobulina G/sangue , Malária/imunologia , Vacinas Antimaláricas/administração & dosagem , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
17.
Nature ; 438(7064): 103-7, 2005 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-16267556

RESUMO

Plasmodium falciparum causes the most severe form of malaria and kills up to 2.7 million people annually. Despite the global importance of P. falciparum, the vast majority of its proteins have not been characterized experimentally. Here we identify P. falciparum protein-protein interactions using a high-throughput version of the yeast two-hybrid assay that circumvents the difficulties in expressing P. falciparum proteins in Saccharomyces cerevisiae. From more than 32,000 yeast two-hybrid screens with P. falciparum protein fragments, we identified 2,846 unique interactions, most of which include at least one previously uncharacterized protein. Informatic analyses of network connectivity, coexpression of the genes encoding interacting fragments, and enrichment of specific protein domains or Gene Ontology annotations were used to identify groups of interacting proteins, including one implicated in chromatin modification, transcription, messenger RNA stability and ubiquitination, and another implicated in the invasion of host cells. These data constitute the first extensive description of the protein interaction network for this important human pathogen.


Assuntos
Malária Falciparum/parasitologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Animais , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Saccharomyces cerevisiae/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
18.
Clin Cancer Res ; 27(24): 6696-6708, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34667029

RESUMO

PURPOSE: This proof-of-principle clinical trial evaluated whether an allogeneic multiple myeloma GM-CSF-secreting vaccine (MM-GVAX) in combination with lenalidomide could deepen the clinical response in patients with multiple myeloma in sustained near complete remission (nCR). PATIENTS AND METHODS: Fifteen patients on lenalidomide were treated with MM-GVAX and pneumococcal conjugate vaccine (PCV; Prevnar) at 1, 2, 3, and 6 months. RESULTS: Eight patients (53.3%) achieved a true CR. With a median follow-up of 5 years, the median progression-free survival had not been reached, and the median overall survival was 7.8 years from enrollment. MM-GVAX induced clonal T-cell expansion and measurable cytokine responses that persisted up to 7 years in all patients. At baseline, a higher minimal residual disease was predictive of early relapse. After vaccination, a lack of both CD27-DNAM1-CD8+ T cells and antigen-presenting cells was associated with disease progression. CONCLUSIONS: MM-GVAX, along with lenalidomide, effectively primed durable immunity and resulted in long-term disease control, as suggested by the reappearance of a detectable, fluctuating M-spike without meeting the criteria for clinical relapse. For patients in a nCR, MM-GVAX administration was safe and resulted in prolonged clinical responses.


Assuntos
Vacinas Anticâncer , Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linfócitos T CD8-Positivos , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Humanos , Lenalidomida , Mieloma Múltiplo/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico
19.
J Immunother Cancer ; 9(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34465597

RESUMO

BACKGROUND: Dedifferentiated liposarcoma (DDLPS) is one of the most common soft tissue sarcoma subtypes and is devastating in the advanced/metastatic stage. Despite the observation of clinical responses to PD-1 inhibitors, little is known about the immune microenvironment in relation to patient prognosis. METHODS: We performed a retrospective study of 61 patients with DDLPS. We completed deep sequencing of the T-cell receptor (TCR) ß-chain and RNA sequencing for predictive modeling, evaluating both immune markers and tumor escape genes. Hierarchical clustering and recursive partitioning were employed to elucidate relationships of cellular infiltrates within the tumor microenvironment, while an immune score for single markers was created as a predictive tool. RESULTS: Although many DDLPS samples had low TCR clonality, high TCR clonality combined with low T-cell fraction predicted lower 3-year overall survival (p=0.05). Higher levels of CD14+ monocytes (p=0.02) inversely correlated with 3-year recurrence-free survival (RFS), while CD4+ T-cell infiltration (p=0.05) was associated with a higher RFS. Genes associated with longer RFS included PD-1 (p=0.003), ICOS (p=0.006), BTLA (p=0.033), and CTLA4 (p=0.02). In a composite immune score, CD4+ T cells had the strongest positive predictive value, while CD14+ monocytes and M2 macrophages had the strongest negative predictive values. CONCLUSIONS: Immune cell infiltration predicts clinical outcome in DDLPS, with CD4+ cells associated with better outcomes; CD14+ cells and M2 macrophages are associated with worse outcomes. Future checkpoint inhibitor studies in DDLPS should incorporate immunosequencing and gene expression profiling techniques that can generate immune landscape profiles.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Macrófagos/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Lipossarcoma , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados da Assistência ao Paciente , Estudos Retrospectivos , Adulto Jovem
20.
Res Sq ; 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32793896

RESUMO

We describe the establishment and current content of the ImmuneCODE™ database, which includes hundreds of millions of T-cell Receptor (TCR) sequences from over 1,400 subjects exposed to or infected with the SARS-CoV-2 virus, as well as over 135,000 high-confidence SARS-CoV-2-specific TCRs. This database is made freely available, and the data contained in it can be downloaded and analyzed online or offline to assist with the global efforts to understand the immune response to the SARS-CoV-2 virus and develop new interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA