Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Ann Neurol ; 92(5): 793-806, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35897138

RESUMO

OBJECTIVE: Duchenne muscular dystrophy (DMD) exon 45-55 deletion (del45-55) has been postulated as a model that could treat up to 60% of DMD patients, but the associated clinical variability and complications require clarification. We aimed to understand the phenotypes and potential modifying factors of this dystrophinopathy subset. METHODS: This cross-sectional, multicenter cohort study applied clinical and functional evaluation. Next generation sequencing was employed to identify intronic breakpoints and their impact on the Dp140 promotor, intronic long noncoding RNA, and regulatory splicing sequences. DMD modifiers (SPP1, LTBP4, ACTN3) and concomitant mutations were also assessed. Haplotypes were built using DMD single nucleotide polymorphisms. Dystrophin expression was evaluated via immunostaining, Western blotting, reverse transcription polymerase chain reaction (PCR), and droplet digital PCR in 9 muscle biopsies. RESULTS: The series comprised 57 subjects (23 index) expressing Becker phenotype (28%), isolated cardiopathy (19%), and asymptomatic features (53%). Cognitive impairment occurred in 90% of children. Patients were classified according to 10 distinct index-case breakpoints; 4 of them were recurrent due to founder events. A specific breakpoint (D5) was associated with severity, but no significant effect was appreciated due to the changes in intronic sequences. All biopsies showed dystrophin expression of >67% and traces of alternative del45-57 transcript that were not deemed pathogenically relevant. Only the LTBP4 haplotype appeared associated the presence of cardiopathy among the explored extragenic factors. INTERPRETATION: We confirmed that del45-55 segregates a high proportion of benign phenotypes, severe cases, and isolated cardiac and cognitive presentations. Although some influence of the intronic breakpoint position and the LTBP4 modifier may exist, the pathomechanisms responsible for the phenotypic variability remain largely unresolved. ANN NEUROL 2022;92:793-806.


Assuntos
Distrofia Muscular de Duchenne , RNA Longo não Codificante , Humanos , Distrofina/genética , Distrofina/metabolismo , Estudos de Coortes , Estudos Transversais , Éxons/genética , Distrofia Muscular de Duchenne/metabolismo , Fenótipo , Actinina/genética
2.
Neuropathol Appl Neurobiol ; 48(5): e12817, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35342985

RESUMO

AIMS: We aim to present data obtained from three patients belonging to three unrelated families with an infantile onset demyelinating neuropathy associated to somatic and neurodevelopmental delay and to describe the underlying genetic changes. METHODS: We performed whole-exome sequencing on genomic DNA from the patients and their parents and reviewed the clinical, muscle and nerve data, the serial neurophysiological studies, brain and muscle MRIs, as well as the respiratory chain complex activity in the muscle of the three index patients. Computer modelling was used to characterise the new missense variant detected. RESULTS: All three patients had a short stature, delayed motor milestone acquisition, intellectual disability and cerebellar abnormalities associated with a severe demyelinating neuropathy, with distinct morphological features. Despite the proliferation of giant mitochondria, the mitochondrial respiratory chain complex activity in skeletal muscle was normal, except in one patient in whom there was a mild decrease in complex I enzyme activity. All three patients carried the same two compound heterozygous variants of the TRMT5 (tRNA Methyltransferase 5) gene, one known pathogenic frameshift mutation [c.312_315del (p.Ile105Serfs*4)] and a second rare missense change [c.665 T > C (p.Ile222Thr)]. TRMT5 is a nuclear-encoded protein involved in the post-transcriptional maturation of mitochondrial tRNA. Computer modelling of the human TRMT5 protein structure suggests that the rare p.Ile222Thr mutation could affect the stability of tRNA binding. CONCLUSIONS: Our study expands the phenotype of mitochondrial disorders caused by TRTM5 mutations and defines a new form of recessive demyelinating peripheral neuropathy.


Assuntos
Doenças Mitocondriais , Doenças do Sistema Nervoso Periférico , tRNA Metiltransferases , Humanos , Doenças Mitocondriais/patologia , Mutação , Fenótipo , RNA de Transferência , Síndrome , tRNA Metiltransferases/genética
3.
Eur J Neurol ; 28(4): 1356-1365, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33151602

RESUMO

BACKGROUND: Laing myopathy is characterized by broad clinical and pathological variability. They are limited in number and protocol of study. We aimed to delineate muscle imaging profiles and validate imaging analysis as an outcome measure. METHODS: This was a cross-sectional and longitudinal cohort study. Data from clinical, functional and semi-quantitative muscle imaging (60 magnetic resonance imaging [MRI] and six computed tomography scans) were studied. Hierarchical analysis, graphic heatmap representation and correlation between imaging and clinical data using Bayesian statistics were carried out. RESULTS: The study cohort comprised 42 patients from 13 families harbouring five MYH7 mutations. The cohort had a wide range of ages, age at onset, disease duration, and myopathy extension and Gardner-Medwin and Walton (GMW) functional scores. Intramuscular fat was evident in all but two asymptomatic/pauci-symptomatic patients. Anterior leg compartment muscles were the only affected muscles in 12% of the patients. Widespread extension to the thigh, hip, paravertebral and calf muscles and, less frequently, the scapulohumeral muscles was commonly observed, depicting distinct patterns and rates of progression. Foot muscles were involved in 40% of patients, evolving in parallel to other regions with absence of a disto-proximal gradient. Whole cumulative imaging score, ranging from 0 to 2.9 out of 4, was associated with disease duration and with myopathy extension and GMW scales. Follow-up MRI studies in 24 patients showed significant score progression at a variable rate. CONCLUSIONS: We confirmed that the anterior leg compartment is systematically affected in Laing myopathy and may represent the only manifestation of this disorder. However, widespread muscle involvement in preferential but variable and not distance-dependent patterns was frequently observed. Imaging score analysis is useful to categorize patients and to follow disease progression over time.


Assuntos
Miosinas Cardíacas , Doenças Musculares , Teorema de Bayes , Variação Biológica da População , Miosinas Cardíacas/genética , Estudos Transversais , Progressão da Doença , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Músculo Esquelético/diagnóstico por imagem , Doenças Musculares/diagnóstico por imagem , Doenças Musculares/genética , Mutação , Cadeias Pesadas de Miosina/genética
4.
Antioxidants (Basel) ; 13(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38539818

RESUMO

Heart failure (HF) is a disease related to bioenergetic mitochondrial abnormalities. However, the whole status of molecules involved in the oxidative phosphorylation system (OXPHOS) is unknown. Therefore, we analyzed the OXPHOS transcriptome of human cardiac tissue by RNA-seq analyses (mRNA n = 36; ncRNA n = 30) in HF patients (ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM)) and control subjects. We detected 28 altered genes in these patients, highlighting greater deregulation in ICM. Specifically, we found a general overexpression of complex V (ATP synthase) elements, among them, ATP5I (ICM, FC = 2.04; p < 0.01), ATP5MJ (ICM, FC = 1.33, p < 0.05), and ATP5IF1 (ICM, FC = 1.81; p < 0.001), which presented a significant correlation with established echocardiographic parameters of cardiac remodeling and ventricular function as follows: left ventricular end-systolic (p < 0.01) and end-diastolic (p < 0.01) diameters, and ejection fraction (p < 0.05). We also detected an increase in ATP5IF1 protein levels (ICM, FC = 1.75; p < 0.01) and alterations in the microRNA expression levels of miR-208b-3p (ICM, FC = -1.44, p < 0.001), miR-483-3p (ICM, FC = 1.37, p < 0.01), regulators of ATP5I. Therefore, we observed the deregulation of the OXPHOS transcriptome in ICM patients, highlighting the overexpression of complex V and its relationship with cardiac remodeling and function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA