Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(12): 7800-7809, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35579339

RESUMO

Coastal reintroduction sites for California condors (Gymnogyps californianus) can lead to elevated halogenated organic compound (HOC) exposure and potential health impacts due to the consumption of scavenged marine mammals. Using nontargeted analysis based on comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/TOF-MS), we compared HOC profiles of plasma from inland and coastal scavenging California condors from the state of California (CA), and marine mammal blubber from CA and the Gulf of California off Baja California (BC), Mexico. We detected more HOCs in coastal condors (32 ± 5, mean number of HOCs ± SD, n = 7) than in inland condors (8 ± 1, n = 10) and in CA marine mammals (136 ± 87, n = 25) than in BC marine mammals (55 ± 46, n = 8). ∑DDT-related compounds, ∑PCBs, and total tris(chlorophenyl)methane (∑TCPM) were, respectively, ∼7, ∼3.5, and ∼148 times more abundant in CA than in BC marine mammals. The endocrine-disrupting potential of selected polychlorinated biphenyls (PCB) congeners, TCPM, and TCPMOH was determined by in vitro California condor estrogen receptor (ER) activation. The higher levels of HOCs in coastal condors compared to those in inland condors and lower levels of HOC contamination in Baja California marine mammals compared to those from the state of California are factors to consider in condor reintroduction efforts.


Assuntos
Disruptores Endócrinos , Bifenilos Policlorados , Animais , Aves , Mamíferos , México
2.
Conserv Biol ; 29(1): 154-63, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25195954

RESUMO

Identifying drivers of ecosystem change in large marine ecosystems is central for their effective management and conservation. This is a sizable challenge, particularly in ecosystems transcending international borders, where monitoring and conservation of long-range migratory species and their habitats are logistically and financially problematic. Here, using tools borrowed from epidemiology, we elucidated common drivers underlying species declines within a marine ecosystem, much in the way epidemiological analyses evaluate risk factors for negative health outcomes to better inform decisions. Thus, we identified ecological traits and dietary specializations associated with species declines in a community of marine predators that could be reflective of ecosystem change. To do so, we integrated count data from winter surveys collected in long-term marine bird monitoring programs conducted throughout the Salish Sea--a transboundary large marine ecosystem in North America's Pacific Northwest. We found that decadal declines in winter counts were most prevalent among pursuit divers such as alcids (Alcidae) and grebes (Podicipedidae) that have specialized diets based on forage fish, and that wide-ranging species without local breeding colonies were more prone to these declines. Although a combination of factors is most likely driving declines of diving forage fish specialists, we propose that changes in the availability of low-trophic prey may be forcing wintering range shifts of diving birds in the Salish Sea. Such a synthesis of long-term trends in a marine predator community not only provides unique insights into the types of species that are at risk of extirpation and why, but may also inform proactive conservation measures to counteract threats--information that is paramount for species-specific and ecosystem-wide conservation.


Assuntos
Organismos Aquáticos/fisiologia , Aves/fisiologia , Conservação dos Recursos Naturais , Ecossistema , Animais , Biomassa , Colúmbia Britânica , Metabolismo Energético , Comportamento Alimentar , Cadeia Alimentar , Dinâmica Populacional , Estações do Ano , Washington
3.
PLoS One ; 8(12): e83248, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24376671

RESUMO

Although energetics is fundamental to animal ecology, traditional methods of determining metabolic rate are neither direct nor instantaneous. Recently, continuous blood oxygen (O2) measurements were used to assess energy expenditure in diving elephant seals (Mirounga angustirostris), demonstrating that an exceptional hypoxemic tolerance and exquisite management of blood O2 stores underlie the extraordinary diving capability of this consummate diver. As the detailed relationship of energy expenditure and dive behavior remains unknown, we integrated behavior, ecology, and physiology to characterize the costs of different types of dives of elephant seals. Elephant seal dive profiles were analyzed and O2 utilization was classified according to dive type (overall function of dive: transit, foraging, food processing/rest). This is the first account linking behavior at this level with in vivo blood O2 measurements in an animal freely diving at sea, allowing us to assess patterns of O2 utilization and energy expenditure between various behaviors and activities in an animal in the wild. In routine dives of elephant seals, the blood O2 store was significantly depleted to a similar range irrespective of dive function, suggesting that all dive types have equal costs in terms of blood O2 depletion. Here, we present the first physiological evidence that all dive types have similarly high blood O2 demands, supporting an energy balance strategy achieved by devoting one major task to a given dive, thereby separating dive functions into distinct dive types. This strategy may optimize O2 store utilization and recovery, consequently maximizing time underwater and allowing these animals to take full advantage of their underwater resources. This approach may be important to optimizing energy expenditure throughout a dive bout or at-sea foraging trip and is well suited to the lifestyle of an elephant seal, which spends > 90% of its time at sea submerged making diving its most "natural" state.


Assuntos
Mergulho/fisiologia , Metabolismo Energético/fisiologia , Consumo de Oxigênio/fisiologia , Oxigênio/metabolismo , Focas Verdadeiras/fisiologia , Animais , Metabolismo Basal , Oceanos e Mares
4.
Mar Biol ; 156(11): 2325-2330, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-24489406

RESUMO

All California abalone species have been shown to be susceptible to infection with the bacterial agent of abalone withering syndrome (WS), although expression of signs of the disease may vary between species and with environmental conditions. We examined thermal modulation of WS expression in green abalone Haliotis fulgens at temperatures mimicking El Niño (18.0°C) and La Niña (14.2°C) events in southern California. In contrast to results obtained from previous experiments with red abalone, H. rufescens, the higher temperature did not result in higher infection intensities of the causative agent of the disease nor increase in clinical signs of disease. These results demonstrate clear differences in thermal regulation of disease expression between abalone species, and provide further data suggesting that green abalone should be a target species of recovery efforts in southern California, where WS is endemic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA