Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(6): 2181-2186, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30674673

RESUMO

Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by the loss of function from the maternal allele of UBE3A, a gene encoding an E3 ubiquitin ligase. UBE3A is only expressed from the maternally inherited allele in mature human neurons due to tissue-specific genomic imprinting. Imprinted expression of UBE3A is restricted to neurons by expression of UBE3A antisense transcript (UBE3A-ATS) from the paternally inherited allele, which silences the paternal allele of UBE3A in cis However, the mechanism restricting UBE3A-ATS expression and UBE3A imprinting to neurons is not understood. We used CRISPR/Cas9-mediated genome editing to functionally define a bipartite boundary element critical for neuron-specific expression of UBE3A-ATS in humans. Removal of this element led to up-regulation of UBE3A-ATS without repressing paternal UBE3A However, increasing expression of UBE3A-ATS in the absence of the boundary element resulted in full repression of paternal UBE3A, demonstrating that UBE3A imprinting requires both the loss of function from the boundary element as well as the up-regulation of UBE3A-ATS These results suggest that manipulation of the competition between UBE3A-ATS and UBE3A may provide a potential therapeutic approach for AS.


Assuntos
Cromatina/genética , Impressão Genômica , Neurônios/metabolismo , Ubiquitina-Proteína Ligases/genética , Síndrome de Angelman/genética , Sítios de Ligação , Cromatina/metabolismo , Epistasia Genética , Éxons , Expressão Gênica , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Ligação Proteica , RNA Antissenso , RNA Longo não Codificante , Deleção de Sequência
2.
J Immunol ; 202(3): 966-978, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30567730

RESUMO

T cell development depends on sequential interactions of thymocytes with cortical thymic epithelial cells (cTECs) and medullary thymic epithelial cells. PSMB11 is a catalytic proteasomal subunit present exclusively in cTECs. Because proteasomes regulate transcriptional activity, we asked whether PSMB11 might affect gene expression in cTECs. We report that PSMB11 regulates the expression of 850 cTEC genes that modulate lymphostromal interactions primarily via the WNT signaling pathway. cTECs from Psmb11 -/- mice 1) acquire features of medullary thymic epithelial cells and 2) retain CD8 thymocytes in the thymic cortex, thereby impairing phase 2 of positive selection, 3) perturbing CD8 T cell development, and 4) causing dramatic oxidative stress leading to apoptosis of CD8 thymocytes. Deletion of Psmb11 also causes major oxidative stress in CD4 thymocytes. However, CD4 thymocytes do not undergo apoptosis because, unlike CD8 thymocytes, they upregulate expression of chaperones and inhibitors of apoptosis. We conclude that PSMB11 has pervasive effects on both CD4 and CD8 thymocytes via regulation of gene expression in cTECs.


Assuntos
Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Células Epiteliais/citologia , Complexo de Endopeptidases do Proteassoma/genética , Timócitos/citologia , Animais , Apoptose , Diferenciação Celular , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Estresse Oxidativo , Complexo de Endopeptidases do Proteassoma/imunologia , Timo/imunologia , Via de Sinalização Wnt
3.
Nucleic Acids Res ; 46(21): 11502-11513, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30212902

RESUMO

Gene expression programs change during cellular transitions. It is well established that a network of transcription factors and chromatin modifiers regulate RNA levels during embryonic stem cell (ESC) differentiation, but the full impact of post-transcriptional processes remains elusive. While cytoplasmic RNA turnover mechanisms have been implicated in differentiation, the contribution of nuclear RNA decay has not been investigated. Here, we differentiate mouse ESCs, depleted for the ribonucleolytic RNA exosome, into embryoid bodies to determine to which degree RNA abundance in the two states can be attributed to changes in transcription versus RNA decay by the exosome. As a general observation, we find that exosome depletion mainly leads to the stabilization of RNAs from lowly transcribed loci, including several protein-coding genes. Depletion of the nuclear exosome cofactor RBM7 leads to similar effects. In particular, transcripts that are differentially expressed between states tend to be more exosome sensitive in the state where expression is low. We conclude that the RNA exosome contributes to down-regulation of transcripts with disparate expression, often in conjunction with transcriptional down-regulation.


Assuntos
Diferenciação Celular/genética , Exossomos/genética , Regulação da Expressão Gênica , Células-Tronco Embrionárias Murinas/metabolismo , RNA/genética , Animais , Exossomos/metabolismo , Perfilação da Expressão Gênica , Camundongos , Células-Tronco Embrionárias Murinas/citologia , RNA/metabolismo , Interferência de RNA , Estabilidade de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Proc Natl Acad Sci U S A ; 112(7): E687-92, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25646440

RESUMO

In contrast to mechanisms mediating uptake of intracellular bacterial pathogens, bacterial egress and cell-to-cell transmission are poorly understood. Previously, we showed that the transmission of pathogenic mycobacteria between phagocytic cells also depends on nonlytic ejection through an F-actin based structure, called the ejectosome. How the host cell maintains integrity of its plasma membrane during the ejection process was unknown. Here, we reveal an unexpected function for the autophagic machinery in nonlytic spreading of bacteria. We show that ejecting mycobacteria are escorted by a distinct polar autophagocytic vacuole. If autophagy is impaired, cell-to-cell transmission is inhibited, the host plasma membrane becomes compromised and the host cells die. These findings highlight a previously unidentified, highly ordered interaction between bacteria and the autophagic pathway and might represent the ancient way to ensure nonlytic egress of bacteria.


Assuntos
Autofagia , Mycobacterium/fisiologia , Dictyostelium/microbiologia , Imunofluorescência , Microscopia Eletrônica de Transmissão , Mycobacterium/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA