Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lett Appl Microbiol ; 73(2): 247-256, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34008189

RESUMO

Lactic acid bacteria (LAB) exert antagonistic activities against diverse microorganisms, including pathogens. In this work, we aimed to investigate the ability of LAB strains isolated from food to produce biofilms and to inhibit growth and surface colonization of Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 at 10°C. The ability of 100 isolated LAB to inhibit EHEC O157:H7 NCTC12900 growth was evaluated in agar diffusion assays. Thirty-seven LAB strains showed strong growth inhibitory effect on EHEC. The highest inhibitory activities corresponded to LAB strains belonging to Lactiplantibacillus plantarum, Pediococcus acidilactici and Pediococcus pentosaceus species. Eighteen out of the 37 strains that showed growth inhibitory effects on EHEC also had the ability to form biofilms on polystyrene surfaces at 10°C and 30°C. Pre-established biofilms on polystyrene of four of these LAB strains were able to reduce significantly surface colonization by EHEC at low temperature (10°C). Among these four strains, Lact. plantarum CRL 1075 not only inhibited EHEC but also was able to grow in the presence of the enteric pathogen. Therefore, this strain proved to be a good candidate for further technological studies oriented to its application in food-processing environments to mitigate undesirable surface contaminations of E. coli.


Assuntos
Antibiose , Biofilmes/crescimento & desenvolvimento , Escherichia coli O157/crescimento & desenvolvimento , Lactobacillales/fisiologia , Manipulação de Alimentos , Microbiologia de Alimentos , Interações Microbianas , Probióticos
2.
Micron ; 155: 103229, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35149252

RESUMO

In recent years, the coevolution of microorganisms with current antibiotics has increased the mechanisms of bacterial resistance, generating a major health problem worldwide. Bordetella pertussis is a bacterium that causes whooping cough and is capable of adopting different states of virulence, i.e. virulent or avirulent states. In this study, we explored the nanomechanical properties of both virulent and avirulent B. pertussis as exposed to various antibiotics. The nanomechanical studies highlighted that only virulent B. pertussis cells undergo a decrease in their cell elastic modulus and height upon antimicrobial exposure, whereas their avirulent counterparts remain unaffected. This study also permitted to highlight different mechanical properties of individual cells as compared to those growing in close contact with other individuals. In addition, we analyzed the presence on the bacterial cell wall of Filamentous hemagglutinin adhesin (FHA), the major attachment factor produced by virulent Bordetella spp., under different virulence conditions by Force Spectroscopy.


Assuntos
Bordetella pertussis , Coqueluche , Antibacterianos/farmacologia , Humanos , Microscopia de Força Atômica , Fatores de Virulência de Bordetella , Coqueluche/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA