Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
N Engl J Med ; 390(23): 2156-2164, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899694

RESUMO

BACKGROUND: Variants in APOE and PSEN1 (encoding apolipoprotein E and presenilin 1, respectively) alter the risk of Alzheimer's disease. We previously reported a delay of cognitive impairment in a person with autosomal dominant Alzheimer's disease caused by the PSEN1 E280A variant who also had two copies of the apolipoprotein E3 Christchurch variant (APOE3 Ch). Heterozygosity for the APOE3 Ch variant may influence the age at which the onset of cognitive impairment occurs. We assessed this hypothesis in a population in which the PSEN1 E280A variant is prevalent. METHODS: We analyzed data from 27 participants with one copy of the APOE3 Ch variant among 1077 carriers of the PSEN1 E280A variant in a kindred from Antioquia, Colombia, to estimate the age at the onset of cognitive impairment and dementia in this group as compared with persons without the APOE3 Ch variant. Two participants underwent brain imaging, and autopsy was performed in four participants. RESULTS: Among carriers of PSEN1 E280A who were heterozygous for the APOE3 Ch variant, the median age at the onset of cognitive impairment was 52 years (95% confidence interval [CI], 51 to 58), in contrast to a matched group of PSEN1 E280A carriers without the APOE3 Ch variant, among whom the median age at the onset was 47 years (95% CI, 47 to 49). In two participants with the APOE3 Ch and PSEN1 E280A variants who underwent brain imaging, 18F-fluorodeoxyglucose positron-emission tomographic (PET) imaging showed relatively preserved metabolic activity in areas typically involved in Alzheimer's disease. In one of these participants, who underwent 18F-flortaucipir PET imaging, tau findings were limited as compared with persons with PSEN1 E280A in whom cognitive impairment occurred at the typical age in this kindred. Four studies of autopsy material obtained from persons with the APOE3 Ch and PSEN1 E280A variants showed fewer vascular amyloid pathologic features than were seen in material obtained from persons who had the PSEN1 E280A variant but not the APOE3 Ch variant. CONCLUSIONS: Clinical data supported a delayed onset of cognitive impairment in persons who were heterozygous for the APOE3 Ch variant in a kindred with a high prevalence of autosomal dominant Alzheimer's disease. (Funded by Good Ventures and others.).


Assuntos
Doença de Alzheimer , Apolipoproteína E3 , Presenilina-1 , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Idade de Início , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Apolipoproteína E3/genética , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Colômbia , Família , Genes Dominantes , Heterozigoto , Tomografia por Emissão de Pósitrons , Presenilina-1/genética , Estudos Retrospectivos
2.
Front Mol Neurosci ; 17: 1373568, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571814

RESUMO

A patient with the PSEN1 E280A mutation and homozygous for APOE3 Christchurch (APOE3Ch) displayed extreme resistance to Alzheimer's disease (AD) cognitive decline and tauopathy, despite having a high amyloid burden. To further investigate the differences in biological processes attributed to APOE3Ch, we generated induced pluripotent stem (iPS) cell-derived cerebral organoids from this resistant case and a non-protected control, using CRISPR/Cas9 gene editing to modulate APOE3Ch expression. In the APOE3Ch cerebral organoids, we observed a protective pattern from early tau phosphorylation. ScRNA sequencing revealed regulation of Cadherin and Wnt signaling pathways by APOE3Ch, with immunostaining indicating elevated ß-catenin protein levels. Further in vitro reporter assays unexpectedly demonstrated that ApoE3Ch functions as a Wnt3a signaling enhancer. This work uncovered a neomorphic molecular mechanism of protection of ApoE3 Christchurch, which may serve as the foundation for the future development of protected case-inspired therapeutics targeting AD and tauopathies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA