RESUMO
Constitutive activation of the antiapoptotic nuclear factor-κB (NF-κB) signaling pathway is a hallmark of the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphomas (DLBCL). Recurrent oncogenic mutations are found in the scaffold protein CARMA1 (CARD11) that connects B-cell receptor (BCR) signaling to the canonical NF-κB pathway. We asked how far additional downstream processes are activated and contribute to the oncogenic potential of DLBCL-derived CARMA1 mutants. To this end, we expressed oncogenic CARMA1 in the NF-κB negative DLBCL lymphoma cell line BJAB. By a proteomic approach we identified recruitment of ß-catenin and its destruction complex consisting of APC, AXIN1, CK1α and GSK3ß to oncogenic CARMA1. Recruitment of the ß-catenin destruction complex was independent of CARMA1-BCL10-MALT1 complex formation or constitutive NF-κB activation and promoted the stabilization of ß-catenin. The ß-catenin destruction complex was also recruited to CARMA1 in ABC DLBCL cell lines, which coincided with elevated ß-catenin expression. In line, ß-catenin was frequently detected in non-GCB DLBCL biopsies that rely on chronic BCR signaling. Increased ß-catenin amounts alone were not sufficient to induce classical WNT target gene signatures, but could augment TCF/LEF-dependent transcriptional activation in response to WNT signaling. In conjunction with NF-κB, ß-catenin enhanced expression of immunosuppressive interleukin-10 and suppressed antitumoral CCL3, indicating that ß-catenin can induce a favorable tumor microenvironment. Thus, parallel activation of NF-κB and ß-catenin signaling by gain-of-function mutations in CARMA1 augments WNT stimulation and is required for regulating the expression of distinct NF-κB target genes to trigger cell-intrinsic and extrinsic processes that promote DLBCL lymphomagenesis.
Assuntos
Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Carcinogênese , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Linfoma Difuso de Grandes Células B/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Linfoma Difuso de Grandes Células B/patologia , Mutação , Estabilidade Proteica , Fatores de Transcrição TCF/metabolismo , Proteínas rho de Ligação ao GTP/metabolismoRESUMO
The discovery of constitutive nuclear factor-κB (NF-κB) activation in Hodgkin's lymphoma tumor cells almost two decades ago was one of the first reports that directly connected deregulated NF-κB signaling to human cancer. Subsequent studies demonstrated that enhanced NF-κB signaling is a common hallmark of many lymphoid malignancies, including Hodgkin lymphoma, mucosa-associated lymphoid tissue lymphoma, diffuse large B-cell lymphoma and multiple myeloma. By inducing an anti-apoptotic and pro-proliferative gene program, NF-κB is involved in lymphoma survival and growth. Identification of somatic mutations that led to activation of oncogenes and inactivation of tumor suppressor genes in the pathway revealed that specific pathogenic mechanisms are responsible for constitutive NF-κB activation in different lymphoma entities. Thus, the identification of distinct oncogenic events is reflecting the diverse cellular origins of the different lymphomas. Further, elucidation of the mechanisms that drive NF-κB in lymphoma is of high clinical relevance as it will allow the design of target-directed precision therapy. Indeed, a number of drugs that impair constitutive NF-κB activation in lymphoid malignancies are currently in preclinical or clinical development.