Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genomics ; 18(1): 26, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491524

RESUMO

BACKGROUND: 'Benign ethnic neutropenia' (BEN) is a heritable condition characterized by lower neutrophil counts, predominantly observed in individuals of African ancestry, and the genetic basis of BEN remains a subject of extensive research. In this study, we aimed to dissect the genetic architecture underlying neutrophil count variation through a linear-mixed model genome-wide association study (GWAS) in a population of African ancestry (N = 5976). Malaria caused by P. falciparum imposes a tremendous public health burden on people living in sub-Saharan Africa. Individuals living in malaria endemic regions often have a reduced circulating neutrophil count due to BEN, raising the possibility that reduced neutrophil counts modulate severity of malaria in susceptible populations. As a follow-up, we tested this hypothesis by conducting a Mendelian randomization (MR) analysis of neutrophil counts on severe malaria (MalariaGEN, N = 17,056). RESULTS: We carried out a GWAS of neutrophil count in individuals associated to an African continental ancestry group within UK Biobank, identifying 73 loci (r2 = 0.1) and 10 index SNPs (GCTA-COJO loci) associated with neutrophil count, including previously unknown rare loci regulating neutrophil count in a non-European population. BOLT-LMM was reliable when conducted in a non-European population, and additional covariates added to the model did not largely alter the results of the top loci or index SNPs. The two-sample bi-directional MR analysis between neutrophil count and severe malaria showed the greatest evidence for an effect between neutrophil count and severe anaemia, although the confidence intervals crossed the null. CONCLUSION: Our GWAS of neutrophil count revealed unique loci present in individuals of African ancestry. We note that a small sample-size reduced our power to identify variants with low allele frequencies and/or low effect sizes in our GWAS. Our work highlights the need for conducting large-scale biobank studies in Africa and for further exploring the link between neutrophils and severe malaria.


Assuntos
Estudo de Associação Genômica Ampla , Malária , Humanos , Estudo de Associação Genômica Ampla/métodos , Neutrófilos , População Negra/genética , Malária/epidemiologia , Malária/genética , Frequência do Gene , Polimorfismo de Nucleotídeo Único/genética , Predisposição Genética para Doença
2.
Diabetologia ; 67(1): 74-87, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37878066

RESUMO

AIMS/HYPOTHESIS: High-throughput metabolomics technologies in a variety of study designs have demonstrated a consistent metabolomic signature of overweight and type 2 diabetes. However, the extent to which these metabolomic patterns can be reversed with weight loss and diabetes remission has been weakly investigated. We aimed to characterise the metabolomic consequences of a weight-loss intervention in individuals with type 2 diabetes. METHODS: We analysed 574 fasted serum samples collected within an existing RCT (the Diabetes Remission Clinical Trial [DiRECT]) (N=298). In the trial, participating primary care practices were randomly assigned (1:1) to provide either a weight management programme (intervention) or best-practice care by guidelines (control) treatment to individuals with type 2 diabetes. Here, metabolomics analysis was performed on samples collected at baseline and 12 months using both untargeted MS and targeted 1H-NMR spectroscopy. Multivariable regression models were fitted to evaluate the effect of the intervention on metabolite levels. RESULTS: Decreases in branched-chain amino acids, sugars and LDL triglycerides, and increases in sphingolipids, plasmalogens and metabolites related to fatty acid metabolism were associated with the intervention (Holm-corrected p<0.05). In individuals who lost more than 9 kg between baseline and 12 months, those who achieved diabetes remission saw greater reductions in glucose, fructose and mannose, compared with those who did not achieve remission. CONCLUSIONS/INTERPRETATION: We have characterised the metabolomic effects of an integrated weight management programme previously shown to deliver weight loss and diabetes remission. A large proportion of the metabolome appears to be modifiable. Patterns of change were largely and strikingly opposite to perturbances previously documented with the development of type 2 diabetes. DATA AVAILABILITY: The data used for analysis are available on a research data repository ( https://researchdata.gla.ac.uk/ ) with access given to researchers subject to appropriate data sharing agreements. Metabolite data preparation, data pre-processing, statistical analyses and figure generation were performed in R Studio v.1.0.143 using R v.4.0.2. The R code for this study has been made publicly available on GitHub at: https://github.com/lauracorbin/metabolomics_of_direct .


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Glucose , Metaboloma , Metabolômica , Redução de Peso , Ensaios Clínicos Controlados Aleatórios como Assunto
3.
Int J Cancer ; 154(1): 94-103, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37578112

RESUMO

Observational studies have suggested a protective role for eosinophils in colorectal cancer (CRC) development and implicated neutrophils, but the causal relationships remain unclear. Here, we aimed to estimate the causal effect of circulating white blood cell (WBC) counts (N = ~550 000) for basophils, eosinophils, monocytes, lymphocytes and neutrophils on CRC risk (N = 52 775 cases and 45 940 controls) using Mendelian randomisation (MR). For comparison, we also examined this relationship using individual-level data from UK Biobank (4043 incident CRC cases and 332 773 controls) in a longitudinal cohort analysis. The inverse-variance weighted (IVW) MR analysis suggested a protective effect of increased basophil count and eosinophil count on CRC risk [OR per 1-SD increase: 0.88, 95% CI: 0.78-0.99, P = .04; OR: 0.93, 95% CI: 0.88-0.98, P = .01]. The protective effect of eosinophils remained [OR per 1-SD increase: 0.88, 95% CI: 0.80-0.97, P = .01] following adjustments for all other WBC subtypes, to account for genetic correlation between the traits, using multivariable MR. A protective effect of increased lymphocyte count on CRC risk was also found [OR: 0.84, 95% CI: 0.76-0.93, P = 6.70e-4] following adjustment. Consistent with MR results, a protective effect for eosinophils in the cohort analysis in the fully adjusted model [RR per 1-SD increase: 0.96, 95% CI: 0.93-0.99, P = .02] and following adjustment for the other WBC subtypes [RR: 0.96, 95% CI: 0.93-0.99, P = .001] was observed. Our study implicates peripheral blood immune cells, in particular eosinophils and lymphocytes, in CRC development, highlighting a need for mechanistic studies to interrogate these relationships.


Assuntos
Neoplasias Colorretais , Eosinófilos , Humanos , Contagem de Leucócitos , Neutrófilos , Fenótipo , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Análise da Randomização Mendeliana/métodos , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único
4.
Immunity ; 42(1): 41-54, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25607458

RESUMO

Naive T cells undergo metabolic reprogramming to support the increased energetic and biosynthetic demands of effector T cell function. However, how nutrient availability influences T cell metabolism and function remains poorly understood. Here we report plasticity in effector T cell metabolism in response to changing nutrient availability. Activated T cells were found to possess a glucose-sensitive metabolic checkpoint controlled by the energy sensor AMP-activated protein kinase (AMPK) that regulated mRNA translation and glutamine-dependent mitochondrial metabolism to maintain T cell bioenergetics and viability. T cells lacking AMPKα1 displayed reduced mitochondrial bioenergetics and cellular ATP in response to glucose limitation in vitro or pathogenic challenge in vivo. Finally, we demonstrated that AMPKα1 is essential for T helper 1 (Th1) and Th17 cell development and primary T cell responses to viral and bacterial infections in vivo. Our data highlight AMPK-dependent regulation of metabolic homeostasis as a key regulator of T cell-mediated adaptive immunity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/fisiologia , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Adaptação Fisiológica/imunologia , Animais , Células Cultivadas , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Metabolismo Energético , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Imunomodulação , Ativação Linfocitária/genética , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/imunologia , Biossíntese de Proteínas/genética
5.
Phys Chem Chem Phys ; 26(14): 10673-10687, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38511629

RESUMO

Superatomic clusters can be assembled to build bulk matter, where the individual characteristics are preserved. The main benefit of these materials over conventional bulk species is the capability to tailor their features by altering the physicochemical identities of individual clusters. Electronic properties of metal clusters can be modified by a protective shell of ligands that attach to the surface and make the whole nanoparticle soluble in organic or aqueous solvents. In the present work, we demonstrate that properly chosen ligands provide not only steric protection from aggregation but also tune the redox activity of metal clusters. We investigate the role of the ligands in electronic structure tunability and ligand-field splitting. Our first-principles calculations agree with the experiments, showing that phosphine-protected gold materials are small gap semiconductors. The obtained bandgaps strongly depend on the ligand used. Hence, using phosphine and organophosphine ligands should be feasible and promising while designing the novel superatom-based materials since the desired range of the bandgap might be achieved (by the proper choice of the ligand).

6.
PLoS Genet ; 17(4): e1009525, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33886544

RESUMO

Head and neck squamous cell carcinoma (HNSCC), which includes cancers of the oral cavity and oropharynx, is a cause of substantial global morbidity and mortality. Strategies to reduce disease burden include discovery of novel therapies and repurposing of existing drugs. Statins are commonly prescribed for lowering circulating cholesterol by inhibiting HMG-CoA reductase (HMGCR). Results from some observational studies suggest that statin use may reduce HNSCC risk. We appraised the relationship of genetically-proxied cholesterol-lowering drug targets and other circulating lipid traits with oral (OC) and oropharyngeal (OPC) cancer risk using two-sample Mendelian randomization (MR). For the primary analysis, germline genetic variants in HMGCR, NPC1L1, CETP, PCSK9 and LDLR were used to proxy the effect of low-density lipoprotein cholesterol (LDL-C) lowering therapies. In secondary analyses, variants were used to proxy circulating levels of other lipid traits in a genome-wide association study (GWAS) meta-analysis of 188,578 individuals. Both primary and secondary analyses aimed to estimate the downstream causal effect of cholesterol lowering therapies on OC and OPC risk. The second sample for MR was taken from a GWAS of 6,034 OC and OPC cases and 6,585 controls (GAME-ON). Analyses were replicated in UK Biobank, using 839 OC and OPC cases and 372,016 controls and the results of the GAME-ON and UK Biobank analyses combined in a fixed-effects meta-analysis. We found limited evidence of a causal effect of genetically-proxied LDL-C lowering using HMGCR, NPC1L1, CETP or other circulating lipid traits on either OC or OPC risk. Genetically-proxied PCSK9 inhibition equivalent to a 1 mmol/L (38.7 mg/dL) reduction in LDL-C was associated with an increased risk of OC and OPC combined (OR 1.8 95%CI 1.2, 2.8, p = 9.31 x10-05), with good concordance between GAME-ON and UK Biobank (I2 = 22%). Effects for PCSK9 appeared stronger in relation to OPC (OR 2.6 95%CI 1.4, 4.9) than OC (OR 1.4 95%CI 0.8, 2.4). LDLR variants, resulting in genetically-proxied reduction in LDL-C equivalent to a 1 mmol/L (38.7 mg/dL), reduced the risk of OC and OPC combined (OR 0.7, 95%CI 0.5, 1.0, p = 0.006). A series of pleiotropy-robust and outlier detection methods showed that pleiotropy did not bias our findings. We found limited evidence for a role of cholesterol-lowering in OC and OPC risk, suggesting previous observational results may have been confounded. There was some evidence that genetically-proxied inhibition of PCSK9 increased risk, while lipid-lowering variants in LDLR, reduced risk of combined OC and OPC. This result suggests that the mechanisms of action of PCSK9 on OC and OPC risk may be independent of its cholesterol lowering effects; however, this was not supported uniformly across all sensitivity analyses and further replication of this finding is required.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Pró-Proteína Convertase 9/genética , Receptores de LDL/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Colesterol/biossíntese , Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/genética , LDL-Colesterol/antagonistas & inibidores , LDL-Colesterol/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Mutação em Linhagem Germinativa/genética , Humanos , Hidroximetilglutaril-CoA Redutases/efeitos dos fármacos , Hidroximetilglutaril-CoA Redutases/genética , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Proteínas de Membrana Transportadoras/genética , Análise da Randomização Mendeliana , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
7.
Diabetologia ; 66(8): 1481-1500, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37171501

RESUMO

AIMS/HYPOTHESIS: Epidemiological studies have generated conflicting findings on the relationship between glucose-lowering medication use and cancer risk. Naturally occurring variation in genes encoding glucose-lowering drug targets can be used to investigate the effect of their pharmacological perturbation on cancer risk. METHODS: We developed genetic instruments for three glucose-lowering drug targets (peroxisome proliferator activated receptor γ [PPARG]; sulfonylurea receptor 1 [ATP binding cassette subfamily C member 8 (ABCC8)]; glucagon-like peptide 1 receptor [GLP1R]) using summary genetic association data from a genome-wide association study of type 2 diabetes in 148,726 cases and 965,732 controls in the Million Veteran Program. Genetic instruments were constructed using cis-acting genome-wide significant (p<5×10-8) SNPs permitted to be in weak linkage disequilibrium (r2<0.20). Summary genetic association estimates for these SNPs were obtained from genome-wide association study (GWAS) consortia for the following cancers: breast (122,977 cases, 105,974 controls); colorectal (58,221 cases, 67,694 controls); prostate (79,148 cases, 61,106 controls); and overall (i.e. site-combined) cancer (27,483 cases, 372,016 controls). Inverse-variance weighted random-effects models adjusting for linkage disequilibrium were employed to estimate causal associations between genetically proxied drug target perturbation and cancer risk. Co-localisation analysis was employed to examine robustness of findings to violations of Mendelian randomisation (MR) assumptions. A Bonferroni correction was employed as a heuristic to define associations from MR analyses as 'strong' and 'weak' evidence. RESULTS: In MR analysis, genetically proxied PPARG perturbation was weakly associated with higher risk of prostate cancer (for PPARG perturbation equivalent to a 1 unit decrease in inverse rank normal transformed HbA1c: OR 1.75 [95% CI 1.07, 2.85], p=0.02). In histological subtype-stratified analyses, genetically proxied PPARG perturbation was weakly associated with lower risk of oestrogen receptor-positive breast cancer (OR 0.57 [95% CI 0.38, 0.85], p=6.45×10-3). In co-localisation analysis, however, there was little evidence of shared causal variants for type 2 diabetes liability and cancer endpoints in the PPARG locus, although these analyses were likely underpowered. There was little evidence to support associations between genetically proxied PPARG perturbation and colorectal or overall cancer risk or between genetically proxied ABCC8 or GLP1R perturbation with risk across cancer endpoints. CONCLUSIONS/INTERPRETATION: Our drug target MR analyses did not find consistent evidence to support an association of genetically proxied PPARG, ABCC8 or GLP1R perturbation with breast, colorectal, prostate or overall cancer risk. Further evaluation of these drug targets using alternative molecular epidemiological approaches may help to further corroborate the findings presented in this analysis. DATA AVAILABILITY: Summary genetic association data for select cancer endpoints were obtained from the public domain: breast cancer ( https://bcac.ccge.medschl.cam.ac.uk/bcacdata/ ); and overall prostate cancer ( http://practical.icr.ac.uk/blog/ ). Summary genetic association data for colorectal cancer can be accessed by contacting GECCO (kafdem at fredhutch.org). Summary genetic association data on advanced prostate cancer can be accessed by contacting PRACTICAL (practical at icr.ac.uk). Summary genetic association data on type 2 diabetes from Vujkovic et al (Nat Genet, 2020) can be accessed through dbGAP under accession number phs001672.v3.p1 (pha004945.1 refers to the European-specific summary statistics). UK Biobank data can be accessed by registering with UK Biobank and completing the registration form in the Access Management System (AMS) ( https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access ).


Assuntos
Neoplasias da Mama , Neoplasias Colorretais , Diabetes Mellitus Tipo 2 , Neoplasias da Próstata , Masculino , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicações , Fatores de Risco , Glucose , Estudo de Associação Genômica Ampla , PPAR gama/genética , Neoplasias da Mama/genética , Neoplasias da Próstata/complicações , Neoplasias Colorretais/genética , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único/genética
8.
BMC Med ; 21(1): 5, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36600297

RESUMO

BACKGROUND: Observational studies have linked childhood obesity with elevated risk of colorectal cancer; however, it is unclear if this association is causal or independent from the effects of obesity in adulthood on colorectal cancer risk. METHODS: We conducted Mendelian randomization (MR) analyses to investigate potential causal relationships between self-perceived body size (thinner, plumper, or about average) in early life (age 10) and measured body mass index in adulthood (mean age 56.5) with risk of colorectal cancer. The total and independent effects of body size exposures were estimated using univariable and multivariable MR, respectively. Summary data were obtained from a genome-wide association study of 453,169 participants in UK Biobank for body size and from a genome-wide association study meta-analysis of three colorectal cancer consortia of 125,478 participants. RESULTS: Genetically predicted early life body size was estimated to increase odds of colorectal cancer (odds ratio [OR] per category change: 1.12, 95% confidence interval [CI]: 0.98-1.27), with stronger results for colon cancer (OR: 1.16, 95% CI: 1.00-1.35), and distal colon cancer (OR: 1.25, 95% CI: 1.04-1.51). After accounting for adult body size using multivariable MR, effect estimates for early life body size were attenuated towards the null for colorectal cancer (OR: 0.97, 95% CI: 0.77-1.22) and colon cancer (OR: 0.97, 95% CI: 0.76-1.25), while the estimate for distal colon cancer was of similar magnitude but more imprecise (OR: 1.27, 95% CI: 0.90-1.77). Genetically predicted adult life body size was estimated to increase odds of colorectal (OR: 1.27, 95% CI: 1.03, 1.57), colon (OR: 1.32, 95% CI: 1.05, 1.67), and proximal colon (OR: 1.57, 95% CI: 1.21, 2.05). CONCLUSIONS: Our findings suggest that the positive association between early life body size and colorectal cancer risk is likely due to large body size retainment into adulthood.


Assuntos
Neoplasias do Colo , Obesidade Infantil , Adulto , Humanos , Criança , Pessoa de Meia-Idade , Adiposidade/genética , Fatores de Risco , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Índice de Massa Corporal , Polimorfismo de Nucleotídeo Único
9.
Hum Genomics ; 16(1): 3, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093177

RESUMO

BACKGROUND: The UK Biobank is a large prospective cohort, based in the UK, that has deep phenotypic and genomic data on roughly a half a million individuals. Included in this resource are data on approximately 78,000 individuals with "non-white British ancestry." While most epidemiology studies have focused predominantly on populations of European ancestry, there is an opportunity to contribute to the study of health and disease for a broader segment of the population by making use of the UK Biobank's "non-white British ancestry" samples. Here, we present an empirical description of the continental ancestry and population structure among the individuals in this UK Biobank subset. RESULTS: Reference populations from the 1000 Genomes Project for Africa, Europe, East Asia, and South Asia were used to estimate ancestry for each individual. Those with at least 80% ancestry in one of these four continental ancestry groups were taken forward (N = 62,484). Principal component and K-means clustering analyses were used to identify and characterize population structure within each ancestry group. Of the approximately 78,000 individuals in the UK Biobank that are of "non-white British" ancestry, 50,685, 6653, 2782, and 2364 individuals were associated to the European, African, South Asian, and East Asian continental ancestry groups, respectively. Each continental ancestry group exhibits prominent population structure that is consistent with self-reported country of birth data and geography. CONCLUSIONS: Methods outlined here provide an avenue to leverage UK Biobank's deeply phenotyped data allowing researchers to maximize its potential in the study of health and disease in individuals of non-white British ancestry.


Assuntos
Bancos de Espécimes Biológicos , População Negra , População Negra/genética , Humanos , Estudos Prospectivos , Reino Unido/epidemiologia , População Branca/genética
10.
Mol Cell ; 60(2): 195-207, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26474064

RESUMO

Cancer cells adapt metabolically to proliferate under nutrient limitation. Here we used combined transcriptional-metabolomic network analysis to identify metabolic pathways that support glucose-independent tumor cell proliferation. We found that glucose deprivation stimulated re-wiring of the tricarboxylic acid (TCA) cycle and early steps of gluconeogenesis to promote glucose-independent cell proliferation. Glucose limitation promoted the production of phosphoenolpyruvate (PEP) from glutamine via the activity of mitochondrial PEP-carboxykinase (PCK2). Under these conditions, glutamine-derived PEP was used to fuel biosynthetic pathways normally sustained by glucose, including serine and purine biosynthesis. PCK2 expression was required to maintain tumor cell proliferation under limited-glucose conditions in vitro and tumor growth in vivo. Elevated PCK2 expression is observed in several human tumor types and enriched in tumor tissue from non-small-cell lung cancer (NSCLC) patients. Our results define a role for PCK2 in cancer cell metabolic reprogramming that promotes glucose-independent cell growth and metabolic stress resistance in human tumors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Regulação Neoplásica da Expressão Gênica , Gluconeogênese/genética , Neoplasias Pulmonares/metabolismo , Neoplasias/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Adaptação Fisiológica/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Ciclo do Ácido Cítrico/genética , Glucose/deficiência , Glutamina/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metabolômica , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Purinas/biossíntese , Ácido Pirúvico/metabolismo , Serina/biossíntese
11.
PLoS Med ; 19(2): e1003897, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35113855

RESUMO

BACKGROUND: Epidemiological studies have reported conflicting findings on the potential adverse effects of long-term antihypertensive medication use on cancer risk. Naturally occurring variation in genes encoding antihypertensive drug targets can be used as proxies for these targets to examine the effect of their long-term therapeutic inhibition on disease outcomes. METHODS AND FINDINGS: We performed a mendelian randomization analysis to examine the association between genetically proxied inhibition of 3 antihypertensive drug targets and risk of 4 common cancers (breast, colorectal, lung, and prostate). Single-nucleotide polymorphisms (SNPs) in ACE, ADRB1, and SLC12A3 associated (P < 5.0 × 10-8) with systolic blood pressure (SBP) in genome-wide association studies (GWAS) were used to proxy inhibition of angiotensin-converting enzyme (ACE), ß-1 adrenergic receptor (ADRB1), and sodium-chloride symporter (NCC), respectively. Summary genetic association estimates for these SNPs were obtained from GWAS consortia for the following cancers: breast (122,977 cases, 105,974 controls), colorectal (58,221 cases, 67,694 controls), lung (29,266 cases, 56,450 controls), and prostate (79,148 cases, 61,106 controls). Replication analyses were performed in the FinnGen consortium (1,573 colorectal cancer cases, 120,006 controls). Cancer GWAS and FinnGen consortia data were restricted to individuals of European ancestry. Inverse-variance weighted random-effects models were used to examine associations between genetically proxied inhibition of these drug targets and risk of cancer. Multivariable mendelian randomization and colocalization analyses were employed to examine robustness of findings to violations of mendelian randomization assumptions. Genetically proxied ACE inhibition equivalent to a 1-mm Hg reduction in SBP was associated with increased odds of colorectal cancer (odds ratio (OR) 1.13, 95% CI 1.06 to 1.22; P = 3.6 × 10-4). This finding was replicated in the FinnGen consortium (OR 1.40, 95% CI 1.02 to 1.92; P = 0.035). There was little evidence of association of genetically proxied ACE inhibition with risk of breast cancer (OR 0.98, 95% CI 0.94 to 1.02, P = 0.35), lung cancer (OR 1.01, 95% CI 0.92 to 1.10; P = 0.93), or prostate cancer (OR 1.06, 95% CI 0.99 to 1.13; P = 0.08). Genetically proxied inhibition of ADRB1 and NCC were not associated with risk of these cancers. The primary limitations of this analysis include the modest statistical power for analyses of drug targets in relation to some less common histological subtypes of cancers examined and the restriction of the majority of analyses to participants of European ancestry. CONCLUSIONS: In this study, we observed that genetically proxied long-term ACE inhibition was associated with an increased risk of colorectal cancer, warranting comprehensive evaluation of the safety profiles of ACE inhibitors in clinical trials with adequate follow-up. There was little evidence to support associations across other drug target-cancer risk analyses, consistent with findings from short-term randomized controlled trials for these medications.


Assuntos
Anti-Hipertensivos/efeitos adversos , Análise da Randomização Mendeliana/métodos , Neoplasias/genética , Peptidil Dipeptidase A/genética , Receptores Adrenérgicos beta 1/genética , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Neoplasias/induzido quimicamente , Neoplasias/epidemiologia , Polimorfismo de Nucleotídeo Único/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Membro 3 da Família 12 de Carreador de Soluto/genética
12.
BMC Med ; 20(1): 40, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35094705

RESUMO

BACKGROUND: Human papilloma virus infection is known to influence oropharyngeal cancer (OPC) risk, likely via sexual transmission. However, sexual behaviour has been correlated with other risk factors including smoking and alcohol, meaning independent effects are difficult to establish. We aimed to evaluate the causal effect of sexual behaviour on the risk of OPC using Mendelian randomization (MR). METHODS: Genetic variants robustly associated with age at first sex (AFS) and the number of sexual partners (NSP) were used to perform both univariable and multivariable MR analyses with summary data on 2641 OPC cases and 6585 controls, obtained from the largest available genome-wide association studies (GWAS). Given the potential for genetic pleiotropy, we performed a number of sensitivity analyses: (i) MR methods to account for horizontal pleiotropy, (ii) MR of sexual behaviours on positive (cervical cancer and seropositivity for Chlamydia trachomatis) and negative control outcomes (lung and oral cancer), (iii) Causal Analysis Using Summary Effect estimates (CAUSE), to account for correlated and uncorrelated horizontal pleiotropic effects, (iv) multivariable MR analysis to account for the effects of smoking, alcohol, risk tolerance and educational attainment. RESULTS: In univariable MR, we found evidence supportive of an effect of both later AFS (IVW OR = 0.4, 95%CI (0.3, 0.7), per standard deviation (SD), p = < 0.001) and increasing NSP (IVW OR = 2.2, 95%CI (1.3, 3.8) per SD, p = < 0.001) on OPC risk. These effects were largely robust to sensitivity analyses accounting for horizontal pleiotropy. However, negative control analysis suggested potential violation of the core MR assumptions and subsequent CAUSE analysis implicated pleiotropy of the genetic instruments used to proxy sexual behaviours. Finally, there was some attenuation of the univariable MR results in the multivariable models (AFS IVW OR = 0.7, 95%CI (0.4, 1.2), p = 0.21; NSP IVW OR = 0.9, 95%CI (0.5 1.7), p = 0.76). CONCLUSIONS: Despite using genetic variants strongly related sexual behaviour traits in large-scale GWAS, we found evidence for correlated pleiotropy. This emphasizes a need for multivariable approaches and the triangulation of evidence when performing MR of complex behavioural traits.


Assuntos
Análise da Randomização Mendeliana , Neoplasias Orofaríngeas , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana/métodos , Neoplasias Orofaríngeas/epidemiologia , Neoplasias Orofaríngeas/genética , Polimorfismo de Nucleotídeo Único , Comportamento Sexual , Fumar/efeitos adversos , Fumar/epidemiologia
13.
Cancer Causes Control ; 33(5): 631-652, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35274198

RESUMO

Dietary factors are assumed to play an important role in cancer risk, apparent in consensus recommendations for cancer prevention that promote nutritional changes. However, the evidence in this field has been generated predominantly through observational studies, which may result in biased effect estimates because of confounding, exposure misclassification, and reverse causality. With major geographical differences and rapid changes in cancer incidence over time, it is crucial to establish which of the observational associations reflect causality and to identify novel risk factors as these may be modified to prevent the onset of cancer and reduce its progression. Mendelian randomization (MR) uses the special properties of germline genetic variation to strengthen causal inference regarding potentially modifiable exposures and disease risk. MR can be implemented through instrumental variable (IV) analysis and, when robustly performed, is generally less prone to confounding, reverse causation and measurement error than conventional observational methods and has different sources of bias (discussed in detail below). It is increasingly used to facilitate causal inference in epidemiology and provides an opportunity to explore the effects of nutritional exposures on cancer incidence and progression in a cost-effective and timely manner. Here, we introduce the concept of MR and discuss its current application in understanding the impact of nutritional factors (e.g., any measure of diet and nutritional intake, circulating biomarkers, patterns, preference or behaviour) on cancer aetiology and, thus, opportunities for MR to contribute to the development of nutritional recommendations and policies for cancer prevention. We provide applied examples of MR studies examining the role of nutritional factors in cancer to illustrate how this method can be used to help prioritise or deprioritise the evaluation of specific nutritional factors as intervention targets in randomised controlled trials. We describe possible biases when using MR, and methodological developments aimed at investigating and potentially overcoming these biases when present. Lastly, we consider the use of MR in identifying causally relevant nutritional risk factors for various cancers in different regions across the world, given notable geographical differences in some cancers. We also discuss how MR results could be translated into further research and policy. We conclude that findings from MR studies, which corroborate those from other well-conducted studies with different and orthogonal biases, are poised to substantially improve our understanding of nutritional influences on cancer. For such corroboration, there is a requirement for an interdisciplinary and collaborative approach to investigate risk factors for cancer incidence and progression.


Assuntos
Análise da Randomização Mendeliana , Neoplasias , Causalidade , Humanos , Análise da Randomização Mendeliana/métodos , Neoplasias/etiologia , Neoplasias/genética , Estado Nutricional , Fatores de Risco
14.
PLoS Med ; 18(9): e1003751, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34499663

RESUMO

BACKGROUND: The potential benefits of gaining body muscle for cardiovascular disease (CVD) susceptibility, and how these compare with the potential harms of gaining body fat, are unknown. We compared associations of early life changes in body lean mass and handgrip strength versus body fat mass with atherogenic traits measured in young adulthood. METHODS AND FINDINGS: Data were from 3,227 offspring of the Avon Longitudinal Study of Parents and Children (39% male; recruited in 1991-1992). Limb lean and total fat mass indices (kg/m2) were measured using dual-energy X-ray absorptiometry scans performed at age 10, 13, 18, and 25 y (across clinics occurring from 2001-2003 to 2015-2017). Handgrip strength was measured at 12 and 25 y, expressed as maximum grip (kg or lb/in2) and relative grip (maximum grip/weight in kilograms). Linear regression models were used to examine associations of change in standardised measures of these exposures across different stages of body development with 228 cardiometabolic traits measured at age 25 y including blood pressure, fasting insulin, and metabolomics-derived apolipoprotein B lipids. SD-unit gain in limb lean mass index from 10 to 25 y was positively associated with atherogenic traits including very-low-density lipoprotein (VLDL) triglycerides. This pattern was limited to lean gain in legs, whereas lean gain in arms was inversely associated with traits including VLDL triglycerides, insulin, and glycoprotein acetyls, and was also positively associated with creatinine (a muscle product and positive control). Furthermore, this pattern for arm lean mass index was specific to SD-unit gains occurring between 13 and 18 y, e.g., -0.13 SD (95% CI -0.22, -0.04) for VLDL triglycerides. Changes in maximum and relative grip from 12 to 25 y were both positively associated with creatinine, but only change in relative grip was also inversely associated with atherogenic traits, e.g., -0.12 SD (95% CI -0.18, -0.06) for VLDL triglycerides per SD-unit gain. Change in fat mass index from 10 to 25 y was more strongly associated with atherogenic traits including VLDL triglycerides, at 0.45 SD (95% CI 0.39, 0.52); these estimates were directionally consistent across sub-periods, with larger effect sizes with more recent gains. Associations of lean, grip, and fat measures with traits were more pronounced among males. Study limitations include potential residual confounding of observational estimates, including by ectopic fat within muscle, and the absence of grip measures in adolescence for estimates of grip change over sub-periods. CONCLUSIONS: In this study, we found that muscle strengthening, as indicated by grip strength gain, was weakly associated with lower atherogenic trait levels in young adulthood, at a smaller magnitude than unfavourable associations of fat mass gain. Associations of muscle mass gain with such traits appear to be smaller and limited to gains occurring in adolescence. These results suggest that body muscle is less robustly associated with markers of CVD susceptibility than body fat and may therefore be a lower-priority intervention target.


Assuntos
Tecido Adiposo/crescimento & desenvolvimento , Adiposidade , Doenças Cardiovasculares/etiologia , Força da Mão , Desenvolvimento Muscular , Músculo Esquelético/crescimento & desenvolvimento , Absorciometria de Fóton , Tecido Adiposo/diagnóstico por imagem , Adolescente , Desenvolvimento do Adolescente , Adulto , Fatores Etários , Biomarcadores/sangue , Fatores de Risco Cardiometabólico , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/prevenção & controle , Criança , Desenvolvimento Infantil , Inglaterra , Feminino , Humanos , Lipídeos/sangue , Estudos Longitudinais , Masculino , Músculo Esquelético/diagnóstico por imagem , Fatores de Proteção , Medição de Risco , Adulto Jovem
15.
PLoS Med ; 18(9): e1003786, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34543281

RESUMO

BACKGROUND: Excess bodyweight and related metabolic perturbations have been implicated in kidney cancer aetiology, but the specific molecular mechanisms underlying these relationships are poorly understood. In this study, we sought to identify circulating metabolites that predispose kidney cancer and to evaluate the extent to which they are influenced by body mass index (BMI). METHODS AND FINDINGS: We assessed the association between circulating levels of 1,416 metabolites and incident kidney cancer using pre-diagnostic blood samples from up to 1,305 kidney cancer case-control pairs from 5 prospective cohort studies. Cases were diagnosed on average 8 years after blood collection. We found 25 metabolites robustly associated with kidney cancer risk. In particular, 14 glycerophospholipids (GPLs) were inversely associated with risk, including 8 phosphatidylcholines (PCs) and 2 plasmalogens. The PC with the strongest association was PC ae C34:3 with an odds ratio (OR) for 1 standard deviation (SD) increment of 0.75 (95% confidence interval [CI]: 0.68 to 0.83, p = 2.6 × 10-8). In contrast, 4 amino acids, including glutamate (OR for 1 SD = 1.39, 95% CI: 1.20 to 1.60, p = 1.6 × 10-5), were positively associated with risk. Adjusting for BMI partly attenuated the risk association for some-but not all-metabolites, whereas other known risk factors of kidney cancer, such as smoking and alcohol consumption, had minimal impact on the observed associations. A mendelian randomisation (MR) analysis of the influence of BMI on the blood metabolome highlighted that some metabolites associated with kidney cancer risk are influenced by BMI. Specifically, elevated BMI appeared to decrease levels of several GPLs that were also found inversely associated with kidney cancer risk (e.g., -0.17 SD change [ßBMI] in 1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2) levels per SD change in BMI, p = 3.4 × 10-5). BMI was also associated with increased levels of glutamate (ßBMI: 0.12, p = 1.5 × 10-3). While our results were robust across the participating studies, they were limited to study participants of European descent, and it will, therefore, be important to evaluate if our findings can be generalised to populations with different genetic backgrounds. CONCLUSIONS: This study suggests a potentially important role of the blood metabolome in kidney cancer aetiology by highlighting a wide range of metabolites associated with the risk of developing kidney cancer and the extent to which changes in levels of these metabolites are driven by BMI-the principal modifiable risk factor of kidney cancer.


Assuntos
Índice de Massa Corporal , Neoplasias Renais/sangue , Metaboloma , Obesidade/sangue , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Europa (Continente)/epidemiologia , Feminino , Humanos , Incidência , Neoplasias Renais/diagnóstico , Neoplasias Renais/epidemiologia , Neoplasias Renais/genética , Masculino , Análise da Randomização Mendeliana , Metabolômica , Pessoa de Meia-Idade , Obesidade/diagnóstico , Obesidade/epidemiologia , Obesidade/genética , Estudos Prospectivos , Medição de Risco , Fatores de Risco , Vitória/epidemiologia
16.
Diabetologia ; 63(9): 1706-1717, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32705315

RESUMO

Recent developments in the field of genetics have accelerated our understanding of the aetiology of complex diseases. Type 2 diabetes mellitus and cancer are no exception, with large-scale genome-wide association studies (GWAS) facilitating exploration of the underlying pathology. Here, we discuss how genetics studies can be used to investigate the relationship between these complex diseases. Observational epidemiological studies consistently report that people with type 2 diabetes have a higher risk of several types of cancer. Indeed, type 2 diabetes and cancer share many common risk factors, such as obesity, ageing, poor diet and low levels of physical activity. However, questions remain regarding the biological mechanisms that link these two diseases. Large-scale GWAS of type 2 diabetes and cancer allow us to consider the evidence for shared genetic architecture. Several shared susceptibility genes have been identified, yet tissue specificity and direction of effect must be taken into account when considering common genetic aetiology. We also consider how GWAS, and associated techniques such as Mendelian randomisation, allow us to dissect the link between the two diseases and address questions such as 'Does type 2 diabetes cause cancer or is the increased risk observed driven by higher adiposity or another associated metabolic feature?' Graphical abstract.


Assuntos
Diabetes Mellitus Tipo 2/genética , Neoplasias/genética , Causalidade , Fatores de Confusão Epidemiológicos , Diabetes Mellitus Tipo 2/epidemiologia , Pleiotropia Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana , Neoplasias/epidemiologia , Fatores de Risco
17.
Allergy ; 75(6): 1361-1370, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31856334

RESUMO

INTRODUCTION: Eosinophils have been long implicated in antiparasite immunity and allergic diseases and, more recently, in regulating adipose tissue homeostasis. The metabolic processes that govern eosinophils, particularly upon activation, are unknown. METHODS: Peripheral blood eosinophils were isolated for the analysis of metabolic processes using extracellular flux analysis and individual metabolites by stable isotope tracer analysis coupled to gas chromatography-mass spectrometry following treatment with IL-3, IL-5 or granulocyte-macrophage colony-stimulating factor (GM-CSF). Eosinophil metabolism was elucidated using pharmacological inhibitors. RESULTS: Human eosinophils engage a largely glycolytic metabolism but also employ mitochondrial metabolism. Cytokine stimulation generates citric acid cycle (TCA) intermediates from both glucose and glutamine revealing this previously unknown role for mitochondria upon eosinophil activation. We further show that the metabolic programme driven by IL-5 is dependent on the STAT5/PI3K/Akt signalling axis and that nicotinamide adenine dinucleotide phosphate oxidase (NOX)-dependent ROS production might be a driver of mitochondrial metabolism upon eosinophil activation. CONCLUSION: We demonstrate for the first time that eosinophils are capable of metabolic plasticity, evidenced by increased glucose-derived lactate production upon ROS inhibition. Collectively, this study reveals a role for both glycolysis and mitochondrial metabolism in cytokine-stimulated eosinophils. Selective targeting of eosinophil metabolism may be of therapeutic benefit in eosinophil-mediated diseases and regulation of tissue homeostasis.


Assuntos
Eosinófilos , Interleucina-5 , Células Cultivadas , Ácido Cítrico , Ciclo do Ácido Cítrico , Glicólise , Humanos , Interleucina-3 , Fosfatidilinositol 3-Quinases , Espécies Reativas de Oxigênio
18.
JAMA ; 323(7): 646-655, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32068819

RESUMO

Importance: Preclinical and epidemiological studies indicate a potential chemopreventive role of statins in epithelial ovarian cancer risk. Objective: To evaluate the association of genetically proxied inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (ie, genetic variants related to lower function of HMG-CoA reductase, target of statins) with epithelial ovarian cancer among the general population and in BRCA1/2 mutation carriers. Design, Setting, and Participants: Single-nucleotide polymorphisms (SNPs) in HMGCR, NPC1L1, and PCSK9 associated with low-density lipoprotein (LDL) cholesterol in a genome-wide association study (GWAS) meta-analysis (N ≤196 475) were used to proxy therapeutic inhibition of HMG-CoA reductase, Niemann-Pick C1-Like 1 (NPC1L1) and proprotein convertase subtilisin/kexin type 9 (PCSK9), respectively. Summary statistics were obtained for these SNPs from a GWAS meta-analysis of case-control analyses of invasive epithelial ovarian cancer in the Ovarian Cancer Association Consortium (OCAC; N = 63 347) and from a GWAS meta-analysis of retrospective cohort analyses of epithelial ovarian cancer among BRCA1/2 mutation carriers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA; N = 31 448). Across the 2 consortia, participants were enrolled between 1973 and 2014 and followed up through 2015. OCAC participants came from 14 countries and CIMBA participants came from 25 countries. SNPs were combined into multi-allelic models and mendelian randomization estimates representing lifelong inhibition of targets were generated using inverse-variance weighted random-effects models. Exposures: Primary exposure was genetically proxied inhibition of HMG-CoA reductase and secondary exposures were genetically proxied inhibition of NPC1L1 and PCSK9 and genetically proxied circulating LDL cholesterol levels. Main Outcomes and Measures: Overall and histotype-specific invasive epithelial ovarian cancer (general population) and epithelial ovarian cancer (BRCA1/2 mutation carriers), measured as ovarian cancer odds (general population) and hazard ratio (BRCA1/2 mutation carriers). Results: The OCAC sample included 22 406 women with invasive epithelial ovarian cancer and 40 941 control individuals and the CIMBA sample included 3887 women with epithelial ovarian cancer and 27 561 control individuals. Median ages for the cohorts ranged from 41.5 to 59.0 years and all participants were of European ancestry. In the primary analysis, genetically proxied HMG-CoA reductase inhibition equivalent to a 1-mmol/L (38.7-mg/dL) reduction in LDL cholesterol was associated with lower odds of epithelial ovarian cancer (odds ratio [OR], 0.60 [95% CI, 0.43-0.83]; P = .002). In BRCA1/2 mutation carriers, genetically proxied HMG-CoA reductase inhibition was associated with lower ovarian cancer risk (hazard ratio, 0.69 [95% CI, 0.51-0.93]; P = .01). In secondary analyses, there were no significant associations of genetically proxied inhibition of NPC1L1 (OR, 0.97 [95% CI, 0.53-1.75]; P = .91), PCSK9 (OR, 0.98 [95% CI, 0.85-1.13]; P = .80), or circulating LDL cholesterol (OR, 0.98 [95% CI, 0.91-1.05]; P = .55) with epithelial ovarian cancer. Conclusions and Relevance: Genetically proxied inhibition of HMG-CoA reductase was significantly associated with lower odds of epithelial ovarian cancer. However, these findings do not indicate risk reduction from medications that inhibit HMG-CoA reductase; further research is needed to understand whether there is a similar association with such medications.


Assuntos
Carcinoma Epitelial do Ovário/prevenção & controle , Hidroximetilglutaril-CoA Redutases/genética , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Neoplasias Ovarianas/prevenção & controle , Polimorfismo de Nucleotídeo Único , Adulto , Carcinoma Epitelial do Ovário/genética , Estudos de Casos e Controles , LDL-Colesterol/sangue , Feminino , Genes BRCA1 , Genes BRCA2 , Humanos , Proteínas de Membrana Transportadoras/genética , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Mutação , Razão de Chances , Neoplasias Ovarianas/genética , Pró-Proteína Convertase 9/genética , Estudos Retrospectivos , Risco
19.
Emerg Infect Dis ; 25(1): 5-14, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30431424

RESUMO

For >40 years, the British Royal Air Force has maintained an aeromedical evacuation facility, the Deployable Air Isolator Team (DAIT), to transport patients with possible or confirmed highly infectious diseases to the United Kingdom. Since 2012, the DAIT, a joint Department of Health and Ministry of Defence asset, has successfully transferred 1 case-patient with Crimean-Congo hemorrhagic fever, 5 case-patients with Ebola virus disease, and 5 case-patients with high-risk Ebola virus exposure. Currently, no UK-published guidelines exist on how to transfer such patients. Here we describe the DAIT procedures from collection at point of illness or exposure to delivery into a dedicated specialist center. We provide illustrations of the challenges faced and, where appropriate, the enhancements made to the process over time.


Assuntos
Resgate Aéreo , Febre Hemorrágica da Crimeia/terapia , Doença pelo Vírus Ebola/terapia , Febres Hemorrágicas Virais/terapia , Isolamento de Pacientes/instrumentação , Transferência de Pacientes/métodos , Humanos , Controle de Infecções , Militares , Isolamento de Pacientes/métodos , Transporte de Pacientes , Reino Unido
20.
Int J Cancer ; 144(8): 1918-1928, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30325021

RESUMO

Lycopene and green tea consumption have been observationally associated with reduced prostate cancer risk, but the underlying mechanisms have not been fully elucidated. We investigated the effect of factorial randomisation to a 6-month lycopene and green tea dietary advice or supplementation intervention on 159 serum metabolite measures in 128 men with raised PSA levels (but prostate cancer-free), analysed by intention-to-treat. The causal effects of metabolites modified by the intervention on prostate cancer risk were then assessed by Mendelian randomisation, using summary statistics from 44,825 prostate cancer cases and 27,904 controls. The systemic effects of lycopene and green tea supplementation on serum metabolic profile were comparable to the effects of the respective dietary advice interventions (R2 = 0.65 and 0.76 for lycopene and green tea respectively). Metabolites which were altered in response to lycopene supplementation were acetate [ß (standard deviation difference vs. placebo): 0.69; 95% CI = 0.24, 1.15; p = 0.003], valine (ß: -0.62; -1.03, -0.02; p = 0.004), pyruvate (ß: -0.56; -0.95, -0.16; p = 0.006) and docosahexaenoic acid (ß: -0.50; -085, -0.14; p = 0.006). Valine and diacylglycerol were lower in the lycopene dietary advice group (ß: -0.65; -1.04, -0.26; p = 0.001 and ß: -0.59; -1.01, -0.18; p = 0.006). A genetically instrumented SD increase in pyruvate increased the odds of prostate cancer by 1.29 (1.03, 1.62; p = 0.027). An intervention to increase lycopene intake altered the serum metabolome of men at risk of prostate cancer. Lycopene lowered levels of pyruvate, which our Mendelian randomisation analysis suggests may be causally related to reduced prostate cancer risk.


Assuntos
Comportamento Alimentar/fisiologia , Licopeno , Metaboloma/fisiologia , Neoplasias da Próstata/metabolismo , Chá , Idoso , Humanos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/sangue , Neoplasias da Próstata/dietoterapia , Ácido Pirúvico/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA