RESUMO
Most real surfaces and objects show variations in appearance with viewing and illumination directions. Besides angular dependency, they also show spatial variation in color, i.e., they exhibit some sort of texture. Of the surfaces we see, surfaces colored by special-effect pigments produce several complex visual effects, like change in color and lightness with viewing and illumination angles, and effects like sparkle and gloss on other textures. In the last two decades, different commercial devices have appeared to help ensure the proper characterization of materials with special-effect pigments. However, the instrumental characterization of sparkle is currently available only by a commercial device integrated into a multi-angle spectrophotometer. As it is difficult to find complete open original studies about the sparkle effect for designing and calibrating this commercial instrument, the main objective of this work was to check whether a good visual and instrumental correlation exists between the sparkle that the observer perceives and the sparkle value provided by the device using some subsets of goniochromatic samples with different types of special-effect pigments and colors. Visual assessments were made by a conventional magnitude estimation method in a directional lighting booth, which belonged to the same company owner of the sparkle instrument, in different geometries and at distinct illuminance levels. The results revealed that there was a good visual correlation of the sparkle grade value. By separately analyzing the factors used in its instrument algorithm, such as sparkle intensity and sparkle area values, it was clearly shown that the correlation was not good or simply did not exist. Consequently, and perhaps in regards to the choice of new special-effect pigments, such as synthetic mica and other future ones, we generated herein even more questions about current mathematical algorithms, and only recognized calculating this texture effect at the industrial level.
RESUMO
In the present work, anthocyanin (ACN) hybrid nanopigments were synthetized by using a natural pomegranate dye (PD) and calcined hydrotalcite (HT) and montmorillonite (MMT) nanoclays. A wide colour gamut was obtained with MMT-based nanopigments ranging from reddish to bluish hues caused by structural transformations of ACNs at different pH values. However, a buffer effect was observed with HT obtaining samples a similar final colour regardless of the synthesis conditions. Nanopigments added with a biomordant extracted from pomegranate peels showed a different colour compared to the incorporation of a commercial mordant due to the intrinsic colouring properties of the pomegranate bioadditive. The developed nanopigments were incorporated at 7 wt% loading to produce novel polyester-based bionanocomposites which were characterized in terms of thermal, mechanical and colour properties. The encapsulation of PD into the nanoclays improved its thermal stability, in particular for MMT-based nanopigments. The pH changes observed during the nanofillers synthesis affected the final colour of the MMT-based nanocomposites, inducing a general increase in ∆E* and a decrease in gloss values. Slight improvements were obtained in terms of elastic modulus for MMT-based polymer samples confirming the applicability of the developed bionanocomposites as colouring and reinforcement materials. A very similar environmental profile was obtained for MMT and HT-based nanofillers showing MMT-based nanopigments a slightly better general behaviour. The results of the LCA study evidenced the suitability of the processes used in this work to the circular bioeconomy approach through sustainable food waste management and the production of bioplastics using waste substrates.
RESUMO
Natural dyes obtained from agro-food waste can be considered promising substitutes of synthetic dyes to be used in several applications. With this aim, in the present work, we studied the use of chlorophyll dye (CD) extracted from broccoli waste to obtain hybrid nanopigments based on calcined hydrotalcite (HT) and montmorillonite (MMT) nanoclays. The synthesized chlorophyll hybrid nanopigments (CDNPs), optimized by using statistical designed experiments, were melt-extruded with a polyester-based matrix (INZEA) at 7 wt% loading. Mechanical, thermal, structural, morphological and colour properties of the obtained bionanocomposites were evaluated. The obtained results evidenced that the maximum CD adsorption into HT was obtained when adding 5 wt% of surfactant (sodium dodecyl sulphate) without using any biomordant and coupling agent, while the optimal conditions for MMT were achieved without adding any of the studied modifiers. In both cases, an improvement in CD thermal stability was observed by its incorporation in the nanoclays, able to protect chlorophyll degradation. The addition of MMT to INZEA resulted in large ΔE* values compared to HT incorporation, showing bionanocomposite green/yellow tones as a consequence of the CDNPs addition. The results obtained by XRD and TEM revealed a partially intercalated/exfoliated structure for INZEA-based bionanocomposites, due to the presence of an inorganic filler in the formulation of the commercial product, which was also confirmed by TGA analysis. CDNPs showed a reinforcement effect due to the presence of the hybrid nanopigments and up to 26% improvement in Young's modulus compared to neat INZEA. Finally, the incorporation of CDNPs induced a decrease in thermal stability as well as limited effect in the melting/crystallization behaviour of the INZEA matrix. The obtained results showed the potential use of green natural dyes from broccoli wastes, adsorbed into nanoclays, for the development of naturally coloured bionanocomposites.
RESUMO
In this work, polyester-based nanocomposites added with laminar nanoclays (calcined hydrotalcite, HT, and montmorillonite, MMT) loaded with lemon waste natural dye (LD) and essential oil (LEO) were prepared and characterized. The optimal conditions to synthetize the hybrid materials were obtained by using statistically designed experiments. The maximum LD adsorption with HT was found using 5 wt% of surfactant (sodium dodecyl sulfate), 5 wt% of mordant (aluminum potassium sulfate dodecahydrate) and 50% (v/v) ethanol. For MMT, 10 wt% of surfactant (cetylpyridinium bromide), 5 wt% of mordant, 1 wt% of (3-aminopropyl) triethoxysilane and 100% distilled water were used. LEO adsorption at 300 wt% was maximized with MMT, 10 wt% of surfactant and 50 °C following an evaporation/adsorption process. The obtained hybrid nanofillers were incorporated in a polyester-based matrix (INZEA) at different loadings (3, 5, and 7 wt%) and the obtained samples were characterized in terms of thermal stability, tensile behavior, and color properties. HT_LEM-based samples showed a bright yellow color compared to MMT_LEM ones. The presence of lemon hybrid pigments in INZEA-based systems produced a remarkable variation in CIELAB color space values, which was more visible with increasing the nanofillers ratio. A limited mechanical enhancement and reduced thermal stability was observed with the nanopigments addition, suggesting a limited extent of intercalation/exfoliation of MMT and HT in the polymer matrix. MMT_LEM pigments showed higher thermal stability than HT_LEM ones. A significant increase in Young's modulus of nanocomposites loaded with hybrid LEO was observed compared to the biopolymer matrix. The LEO inclusion into the nanoclays efficiently improved its thermal stability, especially for MMT.
RESUMO
In order to consider 3D objects from suitable Fused Deposition Modelling (FDM) printers as prototypes for the automotive sector, this sample must be able to reproduce textural effects (sparkle or graininess) or metallic or gonio-appearance to reinforce the attractive appeal of these materials. This study worked with two different commercial filaments: grey metallic PLA (poly(lactic acid)) and ABS (acrylonitrile-butadiene-styrene copolymer) with diffractive pigments. For both materials, a statistical design of experiments (DoE) was carried out to find the printing parameters effect on the final 3D-objects gonio-appearance. The selected printing parameters were printing speed (2 levels), layer height (2 levels) and sample thickness (3 levels). Twelve smooth square objects were printed from each material. The ABS-diffractive filaments achieved the most significant flop and higher sparkle values than metallic PLA. Graininess was high when working with PLA filaments instead of ABS. Layer height was the most significant parameter to maximize PLA objects' flop or sparkle effects. The best result was found when printing at 0.1 mm. For the ABS samples, the stronger flop and sparkle effects were achieved with the 50 mm/s printing speed, the 0.1 mm layer height and the lowest thickness level. This study shows the methodology to study the printing parameters effects and interactions to maximize the FDM-3D-objects gonio-appearance.
RESUMO
PURPOSE: The aim of this study is to determine the reliability of corneal thickness measurements derived from SOCT Copernicus HR (Fourier domain OCT). METHODS: Thirty healthy eyes of 30 subjects were evaluated. One eye of each patient was chosen randomly. Images were obtained of the central (up to 2.0 mm from the corneal apex) and paracentral (2.0 to 4.0 mm) cornea. We assessed corneal thickness (central and paracentral) and epithelium thickness. The intra-observer repeatability data were analysed using the intra-class correlation coefficient (ICC) for a range of 95 per cent within-subject standard deviation (S(W)) and the within-subject coefficient of variation (C(W)). The level of agreement by Bland-Altman analysis was also represented for the study of the reproducibility between observers and agreement between methods of measurement (automatic versus manual). RESULTS: The mean value of the central corneal thickness (CCT) was 542.4 ± 30.1 µm (SD). There was a high intra-observer agreement, finding the best result in the central sector with an intra-class correlation coefficient of 0.99, 95 per cent CI (0.989 to 0.997) and the worst, in the minimum corneal thickness, with an intra-class correlation coefficient of 0.672, 95 per cent CI (0.417 to 0.829). Reproducibility between observers was very high. The best result was found in the central sector thickness obtained both manually and automatically with an intra-class correlation coefficient of 0.990 in both cases and the worst result in the maximum corneal thickness with an intra-class correlation coefficient of 0.827. The agreement between measurement methods was also very high with intra-class correlation coefficient greater than 0.91. On the other hand the repeatability and reproducibility for epithelial measurements was poor. CONCLUSION: Pachymetric mapping with SOCT Copernicus HR was found to be highly repeatable and reproducible. We found that the device lacks an appropriate ergonomic design as proper focusing of the laser beam onto the cornea for anterior segment scanning required that patients were positioned slightly farther away from the machine head-rest than in the setup for retinal imaging.
Assuntos
Paquimetria Corneana , Tomografia de Coerência Óptica/métodos , Adolescente , Adulto , Feminino , Humanos , Masculino , Reprodutibilidade dos TestesRESUMO
We present a systematic algorithm capable of searching for optimal colors for any lightness L* (between 0 and 100), any illuminant (D65, F2, F7, F11, etc.), and any light source reported by CIE. Color solids are graphed in some color spaces (CIELAB, SVF, DIN99d, and CIECAM02) by horizontal (constant lightness) and transversal (constant hue angle) sections. Color solids plotted in DIN99d and CIECAM02 color spaces look more spherical or homogeneous than the ones plotted in CIELAB and SVF color spaces. Depending on the spectrum of the light source or illuminant, the shape of its color solid and its content (variety of distinguishable colors, with or without color correspondence) change drastically, particularly with sources whose spectrum is discontinuous and/or very peaked, with correlated color temperature lower than 5500 K. This could be used to propose an absolute colorimetric quality index for light sources comparing the volumes of their gamuts, in a uniform color space.
RESUMO
PURPOSE: Tinted lenses for everyday use should not impair visual acuity and contrast sensitivity or cause radical changes in color perception. The main aim of this study was to compare the performance in contrast detection and color discrimination tasks of a set of tinted lenses with that of gray filters of equal luminance under D65. METHODS: The contrast sensitivity functions of 10 observers were measured using sinusoidal gratings of mean luminance of 13 cd/m2 by the adjustment method. Color discrimination thresholds from white (x = 0.313, y = 0.330), green (x = 0.346, y = 0.407), and blue (x = 0.280, y = 0.253) were measured along 12 directions in the CIE-1931 xy diagram with and without lenses. RESULTS: Green, brown, and blue filters did not cause significant changes in contrast sensitivity compared with a gray filter of equal luminance, although chromatic discrimination was disturbed. Yellow and orange filters improved achromatic contrast at certain spatial frequencies, but impaired chromatic discrimination. CONCLUSIONS: Compared with gray filters of the same luminance, yellow filters may be useful when enhancement of low achromatic contrasts is desirable, although overall brightness decrements may occur. Nevertheless, these lenses cause tritan-like defects with discrimination losses increasing with the cutoff wavelength.