Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Clin Proteomics ; 21(1): 23, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481131

RESUMO

BACKGROUND: Human tear protein biomarkers are useful for detecting ocular and systemic diseases. Unfortunately, existing tear film sampling methods (Schirmer strip; SS and microcapillary tube; MCT) have significant drawbacks, such as pain, risk of injury, sampling difficulty, and proteomic disparities between methods. Here, we present an alternative tear protein sampling method using soft contact lenses (SCLs). RESULTS: We optimized the SCL protein sampling in vitro and performed in vivo studies in 6 subjects. Using Etafilcon A SCLs and 4M guanidine-HCl for protein removal, we sampled an average of 60 ± 31 µg of protein per eye. We also performed objective and subjective assessments of all sampling methods. Signs of irritation post-sampling were observed with SS but not with MCT and SCLs. Proteomic analysis by mass spectrometry (MS) revealed that all sampling methods resulted in the detection of abundant tear proteins. However, smaller subsets of unique and shared proteins were identified, particularly for SS and MCT. Additionally, there was no significant intrasubject variation between MCT and SCL sampling. CONCLUSIONS: These experiments demonstrate that SCLs are an accessible tear-sampling method with the potential to surpass current methods in sampling basal tears.

2.
J Proteome Res ; 21(9): 2237-2245, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35916235

RESUMO

Formalin-fixed, paraffin-embedded (FFPE) tissues are banked in large repositories to cost-effectively preserve valuable specimens for later study. With the rapid growth of spatial proteomics, FFPE tissues can serve as a more accessible alternative to more commonly used frozen tissues. However, extracting proteins from FFPE tissues is challenging due to cross-links formed between proteins and formaldehyde. Here, we have adapted the nanoPOTS sample processing workflow, which was previously applied to single cells and fresh-frozen tissues, to profile protein expression from FFPE tissues. Following the optimization of extraction solvents, times, and temperatures, we identified an average of 1312 and 3184 high-confidence master proteins from 10 µm thick FFPE-preserved mouse liver tissue squares having lateral dimensions of 50 and 200 µm, respectively. The observed proteome coverage for FFPE tissues was on average 88% of that achieved for similar fresh-frozen tissues. We also characterized the performance of our fully automated sample preparation and analysis workflow, termed autoPOTS, for FFPE spatial proteomics. This modified nanodroplet processing in one pot for trace samples (nanoPOTS) and fully automated processing in one pot for trace sample (autoPOTS) workflows provides the greatest coverage reported to date for high-resolution spatial proteomics applied to FFPE tissues. Data are available via ProteomeXchange with identifier PXD029729.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Animais , Formaldeído , Camundongos , Inclusão em Parafina/métodos , Proteoma/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Fixação de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA