Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 43(11): 2127-2165, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38580776

RESUMO

The in vitro oxygen microenvironment profoundly affects the capacity of cell cultures to model physiological and pathophysiological states. Cell culture is often considered to be hyperoxic, but pericellular oxygen levels, which are affected by oxygen diffusivity and consumption, are rarely reported. Here, we provide evidence that several cell types in culture actually experience local hypoxia, with important implications for cell metabolism and function. We focused initially on adipocytes, as adipose tissue hypoxia is frequently observed in obesity and precedes diminished adipocyte function. Under standard conditions, cultured adipocytes are highly glycolytic and exhibit a transcriptional profile indicative of physiological hypoxia. Increasing pericellular oxygen diverted glucose flux toward mitochondria, lowered HIF1α activity, and resulted in widespread transcriptional rewiring. Functionally, adipocytes increased adipokine secretion and sensitivity to insulin and lipolytic stimuli, recapitulating a healthier adipocyte model. The functional benefits of increasing pericellular oxygen were also observed in macrophages, hPSC-derived hepatocytes and cardiac organoids. Our findings demonstrate that oxygen is limiting in many terminally-differentiated cell types, and that considering pericellular oxygen improves the quality, reproducibility and translatability of culture models.


Assuntos
Adipócitos , Diferenciação Celular , Oxigênio , Oxigênio/metabolismo , Adipócitos/metabolismo , Adipócitos/citologia , Humanos , Técnicas de Cultura de Células/métodos , Animais , Glicólise , Hepatócitos/metabolismo , Hipóxia Celular , Mitocôndrias/metabolismo , Camundongos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Células Cultivadas , Glucose/metabolismo , Macrófagos/metabolismo
2.
Diabetologia ; 66(12): 2320-2331, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37670017

RESUMO

AIMS/HYPOTHESIS: Metformin is increasingly used therapeutically during pregnancy worldwide, particularly in the treatment of gestational diabetes, which affects a substantial proportion of pregnant women globally. However, the impact on placental metabolism remains unclear. In view of the association between metformin use in pregnancy and decreased birthweight, it is essential to understand how metformin modulates the bioenergetic and anabolic functions of the placenta. METHODS: A cohort of 55 placentas delivered by elective Caesarean section at term was collected from consenting participants. Trophoblasts were isolated from the placental samples and treated in vitro with clinically relevant doses of metformin (0.01 mmol/l or 0.1 mmol/l) or vehicle. Respiratory function was assayed using high-resolution respirometry to measure oxygen concentration and calculated [Formula: see text]. Glycolytic rate and glycolytic stress assays were performed using Agilent Seahorse XF assays. Fatty acid uptake and oxidation measurements were conducted using radioisotope-labelled assays. Lipidomic analysis was conducted using LC-MS. Gene expression and protein analysis were performed using RT-PCR and western blotting, respectively. RESULTS: Complex I-supported oxidative phosphorylation was lower in metformin-treated trophoblasts (0.01 mmol/l metformin, 61.7% of control, p<0.05; 0.1 mmol/l metformin, 43.1% of control, p<0.001). The proton efflux rate arising from glycolysis under physiological conditions was increased following metformin treatment, up to 23±5% above control conditions following treatment with 0.1 mmol/l metformin (p<0.01). There was a significant increase in triglyceride concentrations in trophoblasts treated with 0.1 mmol/l metformin (p<0.05), particularly those of esters of long-chain polyunsaturated fatty acids. Fatty acid oxidation was reduced by ~50% in trophoblasts treated with 0.1 mmol/l metformin compared with controls (p<0.001), with no difference in uptake between treatment groups. CONCLUSIONS/INTERPRETATION: In primary trophoblasts derived from term placentas metformin treatment caused a reduction in oxidative phosphorylation through partial inactivation of complex I and potentially by other mechanisms. Metformin-treated trophoblasts accumulate lipids, particularly long- and very-long-chain polyunsaturated fatty acids. Our findings raise clinically important questions about the balance of risk of metformin use during pregnancy, particularly in situations where the benefits are not clear-cut and alternative therapies are available.


Assuntos
Metformina , Placenta , Humanos , Feminino , Gravidez , Metformina/farmacologia , Metformina/uso terapêutico , Metformina/metabolismo , Trofoblastos/metabolismo , Cesárea , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo
3.
FASEB J ; 35(2): e21266, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33484195

RESUMO

Tissue-resident macrophages are required for homeostasis, but also contribute to tissue dysfunction in pathophysiological states. The sympathetic neurotransmitter norepinephrine (NE) induces an anti-inflammatory and tissue-reparative phenotype in macrophages. As NE has a well-established role in promoting triglyceride lipolysis in adipocytes, and macrophages accumulate triglyceride droplets in various physiological and disease states, we investigated the effect of NE on primary mouse bone marrow-derived macrophage triglyceride metabolism. Surprisingly, our data show that in contrast to the canonical role of NE in stimulating lipolysis, NE acting via beta2-adrenergic receptors (B2ARs) in macrophages promotes extracellular fatty acid uptake and their storage as triglycerides and reduces free fatty acid release from triglyceride-laden macrophages. We demonstrate that these responses are mediated by a B2AR activation-dependent increase in Hilpda and Dgat1 gene expression and activity. We further show that B2AR activation favors the storage of extracellular polyunsaturated fatty acids. Finally, we present evidence that macrophages isolated from hearts after myocardial injury, for which survival critically depends on leukocyte B2ARs, have a transcriptional signature indicative of a transient triglyceride accumulation. Overall, we describe a novel and unexpected role of NE in promoting triglyceride storage in macrophages that could have potential implications in multiple diseases.


Assuntos
Agonistas Adrenérgicos/farmacologia , Macrófagos/metabolismo , Norepinefrina/farmacologia , Receptores Adrenérgicos beta 2/metabolismo , Triglicerídeos/metabolismo , Animais , Células Cultivadas , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Leucócitos/metabolismo , Gotículas Lipídicas/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/citologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Transcriptoma
4.
Nature ; 525(7567): 124-8, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26214738

RESUMO

Mitochondria are involved in a variety of cellular functions, including ATP production, amino acid and lipid biogenesis and breakdown, signalling and apoptosis. Mitochondrial dysfunction has been linked to neurodegenerative diseases, cancer and ageing. Although transcriptional mechanisms that regulate mitochondrial abundance are known, comparatively little is known about how mitochondrial function is regulated. Here we identify the metabolite stearic acid (C18:0) and human transferrin receptor 1 (TFR1; also known as TFRC) as mitochondrial regulators. We elucidate a signalling pathway whereby C18:0 stearoylates TFR1, thereby inhibiting its activation of JNK signalling. This leads to reduced ubiquitination of mitofusin via HUWE1, thereby promoting mitochondrial fusion and function. We find that animal cells are poised to respond to both increases and decreases in C18:0 levels, with increased C18:0 dietary intake boosting mitochondrial fusion in vivo. Intriguingly, dietary C18:0 supplementation can counteract the mitochondrial dysfunction caused by genetic defects such as loss of the Parkinson's disease genes Pink or Parkin in Drosophila. This work identifies the metabolite C18:0 as a signalling molecule regulating mitochondrial function in response to diet.


Assuntos
Antígenos CD/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Mitocôndrias/metabolismo , Receptores da Transferrina/metabolismo , Ácidos Esteáricos/metabolismo , Acetiltransferases/deficiência , Animais , Dieta , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Elongases de Ácidos Graxos , Células HeLa , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Larva/efeitos dos fármacos , Larva/genética , Larva/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ácidos Esteáricos/administração & dosagem , Ácidos Esteáricos/farmacologia , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos
5.
Proc Natl Acad Sci U S A ; 114(35): 9421-9426, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28811369

RESUMO

An intergenic region of human chromosome 2 (2p25.3) harbors genetic variants which are among those most strongly and reproducibly associated with obesity. The gene closest to these variants is TMEM18, although the molecular mechanisms mediating these effects remain entirely unknown. Tmem18 expression in the murine hypothalamic paraventricular nucleus (PVN) was altered by changes in nutritional state. Germline loss of Tmem18 in mice resulted in increased body weight, which was exacerbated by high fat diet and driven by increased food intake. Selective overexpression of Tmem18 in the PVN of wild-type mice reduced food intake and also increased energy expenditure. We provide evidence that TMEM18 has four, not three, transmembrane domains and that it physically interacts with key components of the nuclear pore complex. Our data support the hypothesis that TMEM18 itself, acting within the central nervous system, is a plausible mediator of the impact of adjacent genetic variation on human adiposity.


Assuntos
Apetite/genética , Peso Corporal/genética , Proteínas de Membrana/metabolismo , Obesidade/genética , Animais , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Núcleo Hipotalâmico Paraventricular/metabolismo , Proteínas de Transporte Vesicular
6.
Nucleic Acids Res ; 45(22): 12808-12815, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29106596

RESUMO

All DNA polymerases misincorporate ribonucleotides despite their preference for deoxyribonucleotides, and analysis of cultured cells indicates that mammalian mitochondrial DNA (mtDNA) tolerates such replication errors. However, it is not clear to what extent misincorporation occurs in tissues, or whether this plays a role in human disease. Here, we show that mtDNA of solid tissues contains many more embedded ribonucleotides than that of cultured cells, consistent with the high ratio of ribonucleotide to deoxynucleotide triphosphates in tissues, and that riboadenosines account for three-quarters of them. The pattern of embedded ribonucleotides changes in a mouse model of Mpv17 deficiency, which displays a marked increase in rGMPs in mtDNA. However, while the mitochondrial dGTP is low in the Mpv17-/- liver, the brain shows no change in the overall dGTP pool, leading us to suggest that Mpv17 determines the local concentration or quality of dGTP. Embedded rGMPs are expected to distort the mtDNA and impede its replication, and elevated rGMP incorporation is associated with early-onset mtDNA depletion in liver and late-onset multiple deletions in brain of Mpv17-/- mice. These findings suggest aberrant ribonucleotide incorporation is a primary mtDNA abnormality that can result in pathology.


Assuntos
DNA Mitocondrial/genética , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Ribonucleotídeos/genética , Deleção de Sequência , Animais , Sequência de Bases , Encéfalo/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Fígado/metabolismo , Proteínas de Membrana/deficiência , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/deficiência
7.
Hepatology ; 65(4): 1165-1180, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27863448

RESUMO

Nonalcoholic fatty liver disease (NAFLD) can progress from simple steatosis (i.e., nonalcoholic fatty liver [NAFL]) to nonalcoholic steatohepatitis (NASH), cirrhosis, and cancer. Currently, the driver for this progression is not fully understood; in particular, it is not known how NAFLD and its early progression affects the distribution of lipids in the liver, producing lipotoxicity and inflammation. In this study, we used dietary and genetic mouse models of NAFL and NASH and translated the results to humans by correlating the spatial distribution of lipids in liver tissue with disease progression using advanced mass spectrometry imaging technology. We identified several lipids with distinct zonal distributions in control and NAFL samples and observed partial to complete loss of lipid zonation in NASH. In addition, we found increased hepatic expression of genes associated with remodeling the phospholipid membrane, release of arachidonic acid (AA) from the membrane, and production of eicosanoid species that promote inflammation and cell injury. The results of our immunohistochemistry analyses suggest that the zonal location of remodeling enzyme LPCAT2 plays a role in the change in spatial distribution for AA-containing lipids. This results in a cycle of AA-enrichment in pericentral hepatocytes, membrane release of AA, and generation of proinflammatory eicosanoids and may account for increased oxidative damage in pericentral regions in NASH. CONCLUSION: NAFLD is associated not only with lipid enrichment, but also with zonal changes of specific lipids and their associated metabolic pathways. This may play a role in the heterogeneous development of NAFLD. (Hepatology 2017;65:1165-1180).


Assuntos
Eicosanoides/metabolismo , Cirrose Hepática/patologia , Regeneração Hepática/fisiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Fosfolipídeos/metabolismo , Animais , Biópsia por Agulha , Dieta Hiperlipídica , Dieta Ocidental , Modelos Animais de Doenças , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Humanos , Imuno-Histoquímica , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Prognóstico , Distribuição Aleatória , Medição de Risco , Índice de Gravidade de Doença , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
Proc Natl Acad Sci U S A ; 112(2): 506-11, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25540417

RESUMO

Obesity increases the risk of developing life-threatening metabolic diseases including cardiovascular disease, fatty liver disease, diabetes, and cancer. Efforts to curb the global obesity epidemic and its impact have proven unsuccessful in part by a limited understanding of these chronic progressive diseases. It is clear that low-grade chronic inflammation, or metaflammation, underlies the pathogenesis of obesity-associated type 2 diabetes and atherosclerosis. However, the mechanisms that maintain chronicity and prevent inflammatory resolution are poorly understood. Here, we show that inhibitor of κB kinase epsilon (IKBKE) is a novel regulator that limits chronic inflammation during metabolic disease and atherosclerosis. The pathogenic relevance of IKBKE was indicated by the colocalization with macrophages in human and murine tissues and in atherosclerotic plaques. Genetic ablation of IKBKE resulted in enhanced and prolonged priming of the NLRP3 inflammasome in cultured macrophages, in hypertrophic adipose tissue, and in livers of hypercholesterolemic mice. This altered profile associated with enhanced acute phase response, deregulated cholesterol metabolism, and steatoheptatitis. Restoring IKBKE only in hematopoietic cells was sufficient to reverse elevated inflammasome priming and these metabolic features. In advanced atherosclerotic plaques, loss of IKBKE and hematopoietic cell restoration altered plaque composition. These studies reveal a new role for hematopoietic IKBKE: to limit inflammasome priming and metaflammation.


Assuntos
Quinase I-kappa B/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Tecido Adiposo/metabolismo , Adulto , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Proteínas de Transporte/metabolismo , Feminino , Sistema Hematopoético/metabolismo , Humanos , Quinase I-kappa B/deficiência , Quinase I-kappa B/genética , Inflamação/etiologia , Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Nutr J ; 15(1): 100, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27903298

RESUMO

BACKGROUND: Obesity-related insulin resistance is linked to inflammation. Immunometabolic function differs between lean and obese subjects, but whether macronutrient composition of ingested meals affects these responses is not well known. We examined the effects of a single meal rich in fat, protein, or carbohydrate on immunometabolic responses. METHODS: Nine lean insulin sensitive (LIS) men and 9 obese insulin resistant (OIR) men ingested high-carbohydrate (HC), high-fat (HF) or high-protein (HP) mixed meals in random order. We assessed plasma glucose, insulin, and cytokine responses and cytokine gene expression in circulating mononuclear cells (MNC) at fasting and postprandial states (up to 6-h). RESULTS: Expression of NF-κB and TNFα genes were greater; whereas that of TGFß and IL-6 genes were lower, in the OIR compared to the LIS individuals. The differences were significantly greater after the HC meal, but not after the HP or HF meal. Similar results were obtained for plasma concentrations of TNFα and IL-6. CONCLUSIONS: Our findings indicate that a single HC meal has a distinct adverse effect on immunometabolic responses in the OIR individuals. The cumulative effect of such adverse responses to meals rich in carbohydrate may predispose the OIR individuals to a higher risk of cardiovascular disease.


Assuntos
Carboidratos da Dieta/administração & dosagem , Refeições , Obesidade/imunologia , Obesidade/metabolismo , Adulto , Povo Asiático , Glicemia/metabolismo , Índice de Massa Corporal , Estudos Cross-Over , Dieta , Gorduras na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Humanos , Insulina/sangue , Resistência à Insulina , Interleucina-6/sangue , Leucócitos Mononucleares/metabolismo , Masculino , NF-kappa B/genética , NF-kappa B/metabolismo , Período Pós-Prandial , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Adulto Jovem
10.
PLoS Biol ; 9(7): e1001116, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21814494

RESUMO

Two crucial biological processes are (1) the sensing and coordination of responses to low oxygen levels and (2) the control of food intake and energy expenditure. The hypoxia-inducible factor (HIF) family of proteins is known to regulate responses to low oxygen, whereas neuropeptides derived from proopiomelanocortin (POMC) are implicated in the control of food intake and energy expenditure. It is now becoming apparent that these two apparently disparate processes may be linked, with the exciting discovery that HIF proteins can act in the brain to regulate food intake and energy expenditure as reported in the current issue of PLoS Biology. This primer discusses the traditional role of HIF proteins in terms of responding to oxygen levels in the periphery and also their new role in coordinating responses to nutrients in the brain through regulation of POMC.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Metabolismo Energético , Glucose/farmacologia , Hipotálamo/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Pró-Opiomelanocortina/genética , Animais , Feminino , Masculino
11.
PLoS Biol ; 9(6): e1000623, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21666801

RESUMO

Identification of early mechanisms that may lead from obesity towards complications such as metabolic syndrome is of great interest. Here we performed lipidomic analyses of adipose tissue in twin pairs discordant for obesity but still metabolically compensated. In parallel we studied more evolved states of obesity by investigating a separated set of individuals considered to be morbidly obese. Despite lower dietary polyunsaturated fatty acid intake, the obese twin individuals had increased proportions of palmitoleic and arachidonic acids in their adipose tissue, including increased levels of ethanolamine plasmalogens containing arachidonic acid. Information gathered from these experimental groups was used for molecular dynamics simulations of lipid bilayers combined with dependency network analysis of combined clinical, lipidomics, and gene expression data. The simulations suggested that the observed lipid remodeling maintains the biophysical properties of lipid membranes, at the price, however, of increasing their vulnerability to inflammation. Conversely, in morbidly obese subjects, the proportion of plasmalogens containing arachidonic acid in the adipose tissue was markedly decreased. We also show by in vitro Elovl6 knockdown that the lipid network regulating the observed remodeling may be amenable to genetic modulation. Together, our novel approach suggests a physiological mechanism by which adaptation of adipocyte membranes to adipose tissue expansion associates with positive energy balance, potentially leading to higher vulnerability to inflammation in acquired obesity. Further studies will be needed to determine the cause of this effect.


Assuntos
Adipócitos/metabolismo , Adipócitos/patologia , Membrana Celular/metabolismo , Metabolismo dos Lipídeos , Obesidade/metabolismo , Obesidade/patologia , Acetiltransferases/metabolismo , Tecido Adiposo/metabolismo , Adulto , Diferenciação Celular , Elongases de Ácidos Graxos , Ácidos Graxos Insaturados/metabolismo , Feminino , Humanos , Masculino , Fluidez de Membrana , Modelos Biológicos , Simulação de Dinâmica Molecular , Fosfolipídeos/metabolismo , Estudos em Gêmeos como Assunto , Adulto Jovem
12.
Autophagy ; 19(3): 904-925, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35947488

RESUMO

Brown adipose tissue (BAT) thermogenesis affects energy balance, and thereby it has the potential to induce weight loss and to prevent obesity. Here, we document a macroautophagic/autophagic-dependent mechanism of peroxisome proliferator-activated receptor gamma (PPARG) activity regulation that induces brown adipose differentiation and thermogenesis and that is mediated by TP53INP2. Disruption of TP53INP2-dependent autophagy reduced brown adipogenesis in cultured cells. In vivo specific-tp53inp2 ablation in brown precursor cells or in adult mice decreased the expression of thermogenic and mature adipocyte genes in BAT. As a result, TP53INP2-deficient mice had reduced UCP1 content in BAT and impaired maximal thermogenic capacity, leading to lipid accumulation and to positive energy balance. Mechanistically, TP53INP2 stimulates PPARG activity and adipogenesis in brown adipose cells by promoting the autophagic degradation of NCOR1, a PPARG co-repressor. Moreover, the modulation of TP53INP2 expression in BAT and in human brown adipocytes suggests that this protein increases PPARG activity during metabolic activation of brown fat. In all, we have identified a novel molecular explanation for the contribution of autophagy to BAT energy metabolism that could facilitate the design of therapeutic strategies against obesity and its metabolic complications.


Assuntos
Tecido Adiposo Marrom , PPAR gama , Camundongos , Humanos , Animais , Tecido Adiposo Marrom/metabolismo , PPAR gama/metabolismo , Autofagia , Obesidade/metabolismo , Termogênese/genética , Proteínas Nucleares/metabolismo , Correpressor 1 de Receptor Nuclear/metabolismo
13.
Elife ; 122023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36722855

RESUMO

Mitochondrial dysfunction has been reported in obesity and insulin resistance, but primary genetic mitochondrial dysfunction is generally not associated with these, arguing against a straightforward causal relationship. A rare exception, recently identified in humans, is a syndrome of lower body adipose loss, leptin-deficient severe upper body adipose overgrowth, and insulin resistance caused by the p.Arg707Trp mutation in MFN2, encoding mitofusin 2. How the resulting selective form of mitochondrial dysfunction leads to tissue- and adipose depot-specific growth abnormalities and systemic biochemical perturbation is unknown. To address this, Mfn2R707W/R707W knock-in mice were generated and phenotyped on chow and high fat diets. Electron microscopy revealed adipose-specific mitochondrial morphological abnormalities. Oxidative phosphorylation measured in isolated mitochondria was unperturbed, but the cellular integrated stress response was activated in adipose tissue. Fat mass and distribution, body weight, and systemic glucose and lipid metabolism were unchanged, however serum leptin and adiponectin concentrations, and their secretion from adipose explants were reduced. Pharmacological induction of the integrated stress response in wild-type adipocytes also reduced secretion of leptin and adiponectin, suggesting an explanation for the in vivo findings. These data suggest that the p.Arg707Trp MFN2 mutation selectively perturbs mitochondrial morphology and activates the integrated stress response in adipose tissue. In mice, this does not disrupt most adipocyte functions or systemic metabolism, whereas in humans it is associated with pathological adipose remodelling and metabolic disease. In both species, disproportionate effects on leptin secretion may relate to cell autonomous induction of the integrated stress response.


Assuntos
Resistência à Insulina , Lipodistrofia , Humanos , Animais , Camundongos , Leptina/metabolismo , Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Hidrolases/metabolismo , Lipodistrofia/genética , Lipodistrofia/metabolismo , Mitocôndrias/metabolismo
14.
Biochim Biophys Acta ; 1801(3): 338-49, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20056169

RESUMO

While the link between obesity and type 2 diabetes is clear on an epidemiological level, the underlying mechanism linking these two common disorders is not as clearly understood. One hypothesis linking obesity to type 2 diabetes is the adipose tissue expandability hypothesis. The adipose tissue expandability hypothesis states that a failure in the capacity for adipose tissue expansion, rather than obesity per se is the key factor linking positive energy balance and type 2 diabetes. All individuals possess a maximum capacity for adipose expansion which is determined by both genetic and environmental factors. Once the adipose tissue expansion limit is reached, adipose tissue ceases to store energy efficiently and lipids begin to accumulate in other tissues. Ectopic lipid accumulation in non-adipocyte cells causes lipotoxic insults including insulin resistance, apoptosis and inflammation. This article discusses the links between adipokines, inflammation, adipose tissue expandability and lipotoxicity. Finally, we will discuss how considering the concept of allostasis may enable a better understanding of how diabetes develops and allow the rational design of new anti diabetic treatments.


Assuntos
Tecido Adiposo/metabolismo , Alostase/fisiologia , Metabolismo dos Lipídeos , Síndrome Metabólica/metabolismo , Adipócitos/metabolismo , Animais , Diferenciação Celular , Diabetes Mellitus/metabolismo , Humanos , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , Fígado/metabolismo , Modelos Biológicos , Neovascularização Patológica/metabolismo
15.
Biochim Biophys Acta ; 1801(3): 400-4, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20045743

RESUMO

The risk functions for obesity (defined as the quantitative relation between degree of obesity throughout its range and the risk of health problems) have been used to define 'obesity' as an excess storage of fat in the body to such an extent that it causes health problems leading to increased mortality. The lipotoxicity theory implies that the fat stored in droplets of triglycerides in the cells are biologically inert and that the metabolic dysfunctions are primarily due to the increased exposure of the cells to fatty acids. If this is true, it has profound implications for the interpretations of the multiple epidemiological studies of the risk functions. It is obvious from all these studies that the sizes of the fat depots are risk indicators of health effects in various ways. Paradoxically, the sizes of the fat stores are also indicators of the preceding implementation of the ability of the body to protect itself against the toxic effects of the free fatty acids. The current risk of metabolic dysfunctions appears to be determined by the balance between the rate of loading of the body with fatty acids and the rate of eliminating the fatty acids by either triglyceride storage or oxidation. The progress in the development of the dysfunction then depends on the persistence of the imbalance leading to future cumulative exposure of the cells to the toxic effects of the fatty acids rather than on the current size of the fat depots. This may be considered as a reason for changing the definition of obesity to one based on better estimates of future risks of health problems derived from later metabolic dysfunctions rather than on the past coping with the exposure to the fatty acids by storage as triglycerides. Implementation of such definition would require a test that measures this residual capacity to avoid excess exposure of the cells to the fatty acids before the metabolic dysfunctions have emerged. In analogy with the glucose tolerance test, a fatty acid tolerance test may be needed to identify individuals who are at a level of risk for developing lipotoxicity induced metabolic dysfunctions such that they require intervention. This test would ideally be a single biomarker that would determine residual capacity for adipose expansion, fatty acid oxidation and safe ectopic lipid deposition.


Assuntos
Metabolismo dos Lipídeos , Obesidade/metabolismo , Saúde Pública , Humanos , Medição de Risco , Circunferência da Cintura , Aumento de Peso
16.
Mol Metab ; 48: 101220, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33774223

RESUMO

OBJECTIVE: Neuroimmune interactions between the sympathetic nervous system (SNS) and macrophages are required for the homeostasis of multiple tissues, including the adipose tissue. It has been proposed that the SNS maintains adipose tissue macrophages (ATMs) in an anti-inflammatory state via direct norepinephrine (NE) signaling to macrophages. This study aimed to investigate the physiological importance of this paradigm by utilizing a mouse model in which the adrenergic signaling from the SNS to macrophages, but not to other adipose tissue cells, was disrupted. METHODS: We generated a macrophage-specific B2AR knockout mouse (Adrb2ΔLyz2) by crossing Adrb2fl/fl and Lyz2Cre/+ mice. We have previously shown that macrophages isolated from Adrb2ΔLyz2 animals do not respond to NE stimulation in vitro. Herein we performed a metabolic phenotyping of Adrb2ΔLyz2 mice on either chow or high-fat diet (HFD). We also assessed the adipose tissue function of Adrb2ΔLyz2 animals during fasting and cold exposure. Finally, we transplanted Adrb2ΔLyz2 bone marrow to low-density lipoprotein receptor (LDLR) knockout mice and investigated the development of atherosclerosis during Western diet feeding. RESULTS: We demonstrated that SNS-associated ATMs have a transcriptional profile indicative of activated beta-2 adrenergic receptor (B2AR), the main adrenergic receptor isoform in myeloid cells. However, Adrb2ΔLyz2 mice have unaltered energy balance on a chow or HFD. Furthermore, Adrb2ΔLyz2 mice show similar levels of adipose tissue inflammation and function during feeding, fasting, or cold exposure, and develop insulin resistance during HFD at the same rate as controls. Finally, macrophage-specific B2AR deletion does not affect the development of atherosclerosis on an LDL receptor-null genetic background. CONCLUSIONS: Overall, our data suggest that the SNS does not directly modulate the phenotype of adipose tissue macrophages in either lean mice or mouse models of cardiometabolic disease. Instead, sympathetic nerve activity exerts an indirect effect on adipose tissue macrophages through the modulation of adipocyte function.


Assuntos
Aterosclerose/complicações , Aterosclerose/metabolismo , Resistência à Insulina/genética , Macrófagos/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Paniculite/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais/genética , Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Aterosclerose/genética , Transplante de Medula Óssea/métodos , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Paniculite/genética , Fenótipo , Receptores Adrenérgicos beta 2/genética , Sistema Nervoso Simpático/metabolismo
17.
Sci Rep ; 11(1): 7717, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833312

RESUMO

When exposed to nutrient excess and insulin resistance, pancreatic ß-cells undergo adaptive changes in order to maintain glucose homeostasis. The role that growth control genes, highly expressed in early pancreas development, might exert in programming ß-cell plasticity in later life is a poorly studied area. The imprinted Igf2 (insulin-like growth factor 2) gene is highly transcribed during early life and has been identified in recent genome-wide association studies as a type 2 diabetes susceptibility gene in humans. Hence, here we investigate the long-term phenotypic metabolic consequences of conditional Igf2 deletion in pancreatic ß-cells (Igf2ßKO) in mice. We show that autocrine actions of IGF2 are not critical for ß-cell development, or for the early post-natal wave of ß-cell remodelling. Additionally, adult Igf2ßKO mice maintain glucose homeostasis when fed a chow diet. However, pregnant Igf2ßKO females become hyperglycemic and hyperinsulinemic, and their conceptuses exhibit hyperinsulinemia and placentomegalia. Insulin resistance induced by congenital leptin deficiency also renders Igf2ßKO females more hyperglycaemic compared to leptin-deficient controls. Upon high-fat diet feeding, Igf2ßKO females are less susceptible to develop insulin resistance. Based on these findings, we conclude that in female mice, autocrine actions of ß-cell IGF2 during early development determine their adaptive capacity in adult life.


Assuntos
Plasticidade Celular/fisiologia , Fator de Crescimento Insulin-Like II/fisiologia , Células Secretoras de Insulina/citologia , Animais , Feminino , Glucose/metabolismo , Homeostase , Insulina/sangue , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Gravidez
18.
Cell Death Differ ; 28(11): 3022-3035, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34091599

RESUMO

Dysfunction of adipocytes and adipose tissue is a primary defect in obesity and obesity-associated metabolic diseases. Interferon regulatory factor 3 (IRF3) has been implicated in adipogenesis. However, the role of IRF3 in obesity and obesity-associated disorders remains unclear. Here, we show that IRF3 expression in human adipose tissues is positively associated with insulin sensitivity and negatively associated with type 2 diabetes. In mouse pre-adipocytes, deficiency of IRF3 results in increased expression of PPARγ and PPARγ-mediated adipogenic genes, leading to increased adipogenesis and altered adipocyte functionality. The IRF3 knockout (KO) mice develop obesity, insulin resistance, glucose intolerance, and eventually type 2 diabetes with aging, which is associated with the development of white adipose tissue (WAT) inflammation. Increased macrophage accumulation with M1 phenotype which is due to the loss of IFNß-mediated IL-10 expression is observed in WAT of the KO mice compared to that in wild-type mice. Bone-marrow reconstitution experiments demonstrate that the nonhematopoietic cells are the primary contributors to the development of obesity and both hematopoietic and nonhematopoietic cells contribute to the development of obesity-related complications in IRF3 KO mice. This study demonstrates that IRF3 regulates the biology of multiple cell types including adipocytes and macrophages to prevent the development of obesity and obesity-related complications and hence, could be a potential target for therapeutic interventions for the prevention and treatment of obesity-associated metabolic disorders.


Assuntos
Tecido Adiposo/fisiopatologia , Inflamação/fisiopatologia , Fator Regulador 3 de Interferon/genética , Obesidade/genética , Animais , Diferenciação Celular , Humanos , Masculino , Camundongos
19.
PLoS Genet ; 3(4): e64, 2007 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-17465682

RESUMO

Peroxisome proliferator activated receptor gamma 2 (PPARg2) is the nutritionally regulated isoform of PPARg. Ablation of PPARg2 in the ob/ob background, PPARg2(-/-) Lep(ob)/Lep(ob) (POKO mouse), resulted in decreased fat mass, severe insulin resistance, beta-cell failure, and dyslipidaemia. Our results indicate that the PPARg2 isoform plays an important role, mediating adipose tissue expansion in response to positive energy balance. Lipidomic analyses suggest that PPARg2 plays an important antilipotoxic role when induced ectopically in liver and muscle by facilitating deposition of fat as relatively harmless triacylglycerol species and thus preventing accumulation of reactive lipid species. Our data also indicate that PPARg2 may be required for the beta-cell hypertrophic adaptive response to insulin resistance. In summary, the PPARg2 isoform prevents lipotoxicity by (a) promoting adipose tissue expansion, (b) increasing the lipid-buffering capacity of peripheral organs, and (c) facilitating the adaptive proliferative response of beta-cells to insulin resistance.


Assuntos
Tecido Adiposo/crescimento & desenvolvimento , Metabolismo dos Lipídeos/genética , Lipídeos/efeitos adversos , PPAR gama/fisiologia , Animais , Peso Corporal/fisiologia , Metabolismo Energético/fisiologia , Feminino , Hiperglicemia/genética , Hiperglicemia/patologia , Insulina/sangue , Resistência à Insulina/genética , Células Secretoras de Insulina/patologia , Lipídeos/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Modelos Biológicos , PPAR gama/genética
20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA