Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39284370

RESUMO

BACKGROUND: Deficiency of adenosine deaminase 2 (DADA2) is a complex monogenic disease caused by recessive mutations in the ADA2 gene. DADA2 exhibits a broad clinical spectrum encompassing vasculitis, immunodeficiency, and hematologic abnormalities. Yet, the impact of DADA2 on the bone marrow (BM) microenvironment is largely unexplored. OBJECTIVE: This study comprehensively examined the BM and peripheral blood of pediatric and adult patients with DADA2 presenting with rheumatologic/immunologic symptoms or severe hematologic manifestations. METHODS: Immunophenotyping of hematopoietic stem cells (HSCs), progenitor cells, and mature cell populations was performed for 18 patients with DADA2. We also conducted a characterization of mesenchymal stromal cells. RESULTS: Our study revealed a significant decrease in primitive HSCs and progenitor cells, alongside their reduced clonogenic capacity and multilineage differentiation potential. These BM defects were evident in patients with both severe and nonsevere hematologic manifestations, including pediatric patients, demonstrating that BM disruption can emerge silently and early on, even in patients who do not show obvious hematologic symptoms. Beyond stem cells, there was a reduction in mature cell populations in the BM and peripheral blood, affecting myeloid, erythroid, and lymphoid populations. Furthermore, BM mesenchymal stromal cells in patients with DADA2 exhibited reduced clonogenic and proliferation capabilities and were more prone to undergo cellular senescence marked by elevated DNA damage. CONCLUSIONS: Our exploration into the BM landscape of patients with DADA2 sheds light on the critical hematologic dimension of the disease and emphasizes the importance of vigilant monitoring, even in the case of subclinical presentation.

2.
J Infect Dis ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976510

RESUMO

The current study aimed to investigate determinants of severity in a previously healthy patient who experienced two life-threatening infections, from West Nile Virus and SARS-CoV2. During COVID19 hospitalization he was diagnosed with a thymoma, retrospectively identified as already present at the time of WNV infection. Heterozygosity for p.Pro554Ser in the TLR3 gene, which increases susceptibility to severe COVID-19, and homozygosity for CCR5 c.554_585del, associated to severe WNV infection, were found. Neutralizing anti-IFN-α and anti-IFN-ω auto-antibodies were detected, likely induced by the underlying thymoma and increasing susceptibility to both severe COVID-19 pneumonia and West Nile encephalitis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA