Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000790

RESUMO

Cellulose is one of the main renewable polymers whose properties are very attractive in many fields, including biomedical applications. The modification of nanocrystalline cellulose (NCC) opens up the possibility of creating nanomaterials with properties of interest as well as combining them with other biomedical polymers. In this work, we proposed the covalent modification of NCC with amphiphilic polyanions such as modified heparin (Hep) and poly(αL-glutamic acid) (PGlu). The modification of NCC should overcome two drawbacks in the production of composite materials based on poly(ε-caprolactone) (PCL), namely, (1) to improve the distribution of modified NCC in the PCL matrix, and (2) to provide the composite material with osteoconductive properties. The obtained specimens of modified NCC were characterized by Fourier-transform infrared spectroscopy and solid-state 13C nuclear magnetic resonance spectroscopy, dynamic and electrophoretic light scattering, as well as thermogravimetric analysis. The morphology of PCL-based composites containing neat or modified NCC as filler was studied by optical and scanning electron microscopy. The mechanical properties of the obtained composites were examined in tensile tests. The homogeneity of filler distribution as well as the mechanical properties of the composites depended on the method of NCC modification and the amount of attached polyanion. In vitro biological evaluation showed improved adhesion of human fetal mesenchymal stem cells (FetMSCs) and human osteoblast-like cells (MG-63 osteosarcoma cell line) to PCL-based composites filled with NCC bearing Hep or PGlu derivatives compared to pure PCL. Furthermore, these composites demonstrated the osteoconductive properties in the experiment on the osteogenic differentiation of FetMSCs.

2.
Polymers (Basel) ; 15(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139941

RESUMO

A fibrillar hydrogel was obtained by covalent crosslinking via Diels-Alder reaction of two types of cellulose nanocrystals (CNCs) with furan and maleimide groups. Gelation has been studied at various ratios of components and temperatures in the range from 20 to 60 °C. It was shown that the rheological properties of the hydrogel can be optimized by varying the concentration and ratio of components. Due to the rigid structure of the CNCs, the hydrogel could be formed at a concentration of at least 5 wt%; however, it almost does not swell either in water with pH 5 or 7 or in the HBSS buffer. The introduction of aldehyde groups into the CNCs allows for the conjugation of physiologically active molecules containing primary amino groups due to the formation of imine bonds. Here, we used benzocaine as a model drug for conjugation with CNC hydrogel. The resulting drug-conjugated hydrogel demonstrated the stability of formulation at pH 7 and a pH-sensitive release of benzocaine due to the accelerated hydrolytic cleavage of the imine bond at pH < 7. The developed drug-conjugated hydrogel is promising as wound dressings for local anesthesia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA