Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 92(6): 4193-4200, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32052954

RESUMO

Performing rheo-microMRI velocimetry at a high magnetic field with strong pulsed field gradients has clear advantages in terms of (chemical) sensitivity and resolution in velocities, time, and space. To benefit from these advantages, some artifacts need to be minimized. Significant sources of such artifacts are chemical shift dispersion due to the high magnetic field, eddy currents caused by the pulsed magnetic field gradients, and possible mechanical instabilities in concentric cylinder (CC) rheo-cells. These, in particular, hamper quantitative assessment of spatially resolved velocity profiles needed to construct local flow curves (LFCs) in CC geometries with millimeter gap sizes. A major improvement was achieved by chemical shift selective suppression of signals that are spectroscopically different from the signal of interest. By also accounting for imperfections in pulsed field gradients, LFCs were obtained that were virtually free of artifacts. The approach to obtain quantitative LFCs in millimeter gap CC rheo-MRI cells was validated for Newtonian and simple yield stress fluids, which both showed quantitative agreement between local and global flow curves. No systematic effects of gap size and rotational velocity on the viscosity of a Newtonian fluid and yield stress of a complex fluid could be observed. The acquisition of LFCs during heterogeneous and transient flow of fat crystal dispersion demonstrated that local constitutive laws can be assessed by rheo-microMRI at a high magnetic field in a noninvasive, quantitative, and real-time manner.

2.
Langmuir ; 35(6): 2221-2229, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30642183

RESUMO

A detailed investigation was carried out on the modulation of the coupling between network formation and the recrystallization of oil-dispersed micronized fat crystal (MFC) nanoplatelets by varying oil composition, shear, and temperature. Sunflower (SF) and bean (BO) oils were used as dispersing media for MFC nanoplatelets. During MFC dispersion production at high shear, a significant increase in the average crystal thickness (ACT) could be observed, pointing to recrystallization of the MFC nanoplatelets. More rapid recrystallization of MFC occurred in the SF dispersion than in the BO dispersion, which is attributed to higher solubility of MFC in the SF oil. When the dispersions were maintained under low shear in narrow gap Couette geometry, we witnessed two stages of recrystallization (measured via rheo-SAXD) and the development of a local yield stress (measured via rheo-MRI). In the first stage, shear-enabled mass transfer induces rapid recrystallization of randomly distributed MFC nanoplatelets, which is reflected in a rapid increase in ACT (rheo-SAXD). The formation of a space-filling weak-link MFC network explains the increase in yield stress (assessed in real time by rheo-MRI). In this second stage, recrystallization slows down and yield stress decreases as a result of the formation of MFC aggregates in the weak link network, as observed by confocal Raman imaging. The high fractal dimension of the weak-link network indicates that aggregation takes place via a particle-cluster mechanism. The effects of oil type and shear on the recrystallization rate and network strength could be reproduced in a stirred bowl with a heterogeneous shear stress field, which opens perspectives for the rational manipulation of MFC thickness and network strength under industrial processing conditions.


Assuntos
Nanoestruturas/química , Triglicerídeos/química , Cristalização , Reologia/métodos , Solubilidade , Óleo de Girassol/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA