Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
BJU Int ; 121(4): 600-609, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29161753

RESUMO

OBJECTIVES: To assess the potential of second-generation proteasome inhibition by carfilzomib and its combination with the human immunodeficiency virus (HIV) protease inhibitors (HIV-PIs) lopinavir and nelfinavir in vitro for improved treatment of clear cell renal cell cancer (ccRCC). MATERIALS AND METHODS: Cytotoxicity, reactive oxygen species (ROS) production, and unfolded protein response (UPR) activation of proteasome inhibitors, HIV-PIs, and their combination were assessed in three cell lines and primary cells derived from three ccRCC tumours by MTS assay, flow cytometry, quantitative reverse transcriptase-polymerase chain reaction and western blot, respectively. Proteasome activity was determined by activity based probes. Flow cytometry was used to assess apoptosis by annexin V/propidium iodide assay and ATP-binding cassette sub-family B member 1 (ABCB1) activity by MitoTracker™ Green FM efflux assay (Thermo Fisher Scientific, MA, USA). RESULTS: Lopinavir and nelfinavir significantly increased the cytotoxic effect of carfilzomib in all cell lines and primary cells. ABCB1 efflux pump inhibition, induction of ROS production, and UPR pre-activation by lopinavir were identified as underlying mechanisms of this strong synergistic effect. Combined treatment led to unresolved protein stress, increased activation of pro-apoptotic UPR pathway, and a significant increase in apoptosis. CONCLUSION: The combination of the proteasome inhibitor carfilzomib and the HIV-PIs lopinavir and nelfinavir has a strong synergistic cytotoxic activity against ccRCCin vitro at therapeutically relevant drug concentrations. This effect is most likely explained by synergistic UPR triggering and ABCB1-modulation caused by HIV-PIs. Our findings suggest that combined treatment of second-generation proteasome inhibitors and HIV-PIs should be investigated in patients with metastatic RCC within a clinical trial.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Inibidores da Protease de HIV/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Lopinavir/uso terapêutico , Nelfinavir/uso terapêutico , Inibidores de Proteassoma/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos
2.
Stem Cells ; 23(8): 1200-11, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15955829

RESUMO

Although the detection of several components of the fibroblast growth factor (FGF) signaling pathway in human embryonic stem cells (hESCs) has been reported, the functionality of that pathway and effects on cell fate decisions are yet to be established. In this study we characterized expression of FGF-2, the prototypic member of the FGF family, and its receptors (FGFRs) in undifferentiated and differentiating hESCs; subsequently, we analyzed the effects of FGF-2 on hESCs, acting as both exogenous and endogenous factors. We have determined that undifferentiated hESCs are abundant in several molecular-mass isoforms of FGF-2 and that expression pattern of these isoforms remains unchanged under conditions that induce hESC differentiation. Significantly, FGF-2 is released by hESCs into the medium, suggesting an autocrine activity. Expression of FGFRs in undifferentiated hESCs follows a specific pattern, with FGFR1 being the most abundant species and other receptors showing lower expression in the following order: FGFR1 --> FGFR3 --> FGFR4 --> FGFR2. Initiation of differentiation is accompanied by profound changes in FGFR expression, particularly the upregulation of FGFR1. When hESCs are exposed to exogenous FGF-2, extracellular signal-regulated kinases are phosphorylated and thereby activated. However, the presence or absence of exogenous FGF-2 does not significantly affect the proliferation of hESCs. Instead, increased concentration of exogenous FGF-2 leads to reduced outgrowth of hESC colonies with time in culture. Finally, the inhibitor of FGFRs, SU5402, was used to ascertain whether FGF-2 that is released by hESCs exerts its activities via autocrine pathways. Strikingly, the resultant inhibition of FGFR suppresses activation of downstream protein kinases and causes rapid cell differentiation, suggesting an involvement of autocrine FGF signals in the maintenance of proliferating hESCs in the undifferentiated state. In conclusion from our data, we propose that this endogenous FGF signaling pathway can be implicated in self-renewal or differentiation of hESCs.


Assuntos
Embrião de Mamíferos/citologia , Fator 2 de Crescimento de Fibroblastos/fisiologia , Receptores de Fatores de Crescimento de Fibroblastos/fisiologia , Células-Tronco/metabolismo , Diferenciação Celular , Relação Dose-Resposta a Droga , Fator 2 de Crescimento de Fibroblastos/biossíntese , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Isoformas de Proteínas , Pirróis/farmacologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/biossíntese , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/fisiologia , Receptores de Fatores de Crescimento de Fibroblastos/biossíntese , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA