Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 585(7824): 207-210, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908267

RESUMO

The successful operation of quantum computers relies on protecting qubits from decoherence and noise, which-if uncorrected-will lead to erroneous results. Because these errors accumulate during an algorithm, correcting them is a key requirement for large-scale and fault-tolerant quantum information processors. Besides computational errors, which can be addressed by quantum error correction1-9, the carrier of the information can also be completely lost or the information can leak out of the computational space10-14. It is expected that such loss errors will occur at rates that are comparable to those of computational errors. Here we experimentally implement a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code15,16 in a trapped-ion quantum processor. The key technique used for this correction is a quantum non-demolition measurement performed via an ancillary qubit, which acts as a minimally invasive probe that detects absent qubits while imparting the smallest quantum mechanically possible disturbance to the remaining qubits. Upon detecting qubit loss, a recovery procedure is triggered in real time that maps the logical information onto a new encoding on the remaining qubits. Although the current demonstration is performed in a trapped-ion quantum processor17, the protocol is applicable to other quantum computing architectures and error correcting codes, including leading two- and three-dimensional topological codes. These deterministic methods provide a complete toolbox for the correction of qubit loss that, together with techniques that mitigate computational errors, constitute the building blocks of complete and scalable quantum error correction.

2.
J Chem Phys ; 159(4)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37522404

RESUMO

In this work, we test a recently developed method to enhance classical auxiliary-field quantum Monte Carlo (AFQMC) calculations with quantum computers against examples from chemistry and material science, representative of classes of industry-relevant systems. As molecular test cases, we calculate the energy curve of H4 and the relative energies of ozone and singlet molecular oxygen with respect to triplet molecular oxygen, which is industrially relevant in organic oxidation reactions. We find that trial wave functions beyond single Slater determinants improve the performance of AFQMC and allow it to generate energies close to chemical accuracy compared to full configuration interaction or experimental results. In the field of material science, we study the electronic structure properties of cuprates through the quasi-1D Fermi-Hubbard model derived from CuBr2, where we find that trial wave functions with both significantly larger fidelities and lower energies over a mean-field solution do not necessarily lead to AFQMC results closer to the exact ground state energy.

3.
Phys Rev Lett ; 121(6): 060501, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30141685

RESUMO

In this Letter, we establish and explore a new connection between quantum information theory and classical statistical mechanics by studying the problem of qubit losses in 2D topological color codes. We introduce a protocol to cope with qubit losses, which is based on the identification and removal of a twin qubit from the code, and which guarantees the recovery of a valid three-colorable and trivalent reconstructed color code. Moreover, we show that determining the corresponding qubit loss error threshold is equivalent to a new generalized classical percolation problem. We numerically compute the associated qubit loss thresholds for two families of 2D color code and find that with p=0.461±0.005 these are close to satisfying the fundamental limit of 50% as imposed by the no-cloning theorem. Our findings reveal a new connection between topological color codes and percolation theory, show high robustness of color codes against qubit loss, and are directly relevant for implementations of topological quantum error correction in various physical platforms.

4.
Phys Rev Lett ; 113(15): 156402, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25375726

RESUMO

We propose and analyze a generalization of the Kitaev chain for fermions with long-range p-wave pairing, which decays with distance as a power law with exponent α. Using the integrability of the model, we demonstrate the existence of two types of gapped regimes, where correlation functions decay exponentially at short range and algebraically at long range (α > 1) or purely algebraically (α < 1). Most interestingly, along the critical lines, long-range pairing is found to break conformal symmetry for sufficiently small α. This is accompanied by a violation of the area law for the entanglement entropy in large parts of the phase diagram in the presence of a gap and can be detected via the dynamics of entanglement following a quench. Some of these features may be relevant for current experiments with cold atomic ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA