RESUMO
Uncoupling protein 2 (UCP2) is a member of the mitochondrial proton transport family that uncouples proton entry to the mitochondria from ATP synthesis. UCP2 expression levels have been linked to predisposition to diabetes and obesity. In addition, UCP2 prevents neuronal death and injury. Here we show that the common -866G/A promoter polymorphism is associated with susceptibility to multiple sclerosis (MS) in the German population. We analysed altogether 1,097 MS patients and 462 control subjects from two cohorts and found that the common G allele is associated with disease susceptibility (p = 0.0015). The UCP2 -866G allele is correlated with lower levels of UCP2 expression as shown here in vitro and in vivo. Thus, UCP2 promoter polymorphism may contribute to MS susceptibility by regulating the level of UCP2 protein in the central nervous and/or the immune systems.
Assuntos
Predisposição Genética para Doença/genética , Proteínas de Membrana Transportadoras/genética , Proteínas Mitocondriais/genética , Esclerose Múltipla/genética , Polimorfismo Genético , Regiões Promotoras Genéticas/genética , Adolescente , Adulto , Alelos , Células Cultivadas , Feminino , Frequência do Gene , Humanos , Canais Iônicos , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Linfócitos T/metabolismo , Proteína Desacopladora 2RESUMO
Uncoupling protein 2 (UCP2) is a member of the mitochondrial transporter superfamily that is expressed in many tissues, including immune cells. UCP2 prevents oxidative stress by reducing reactive oxygen species. Using UCP2-deficient mice, it was shown that UCP2 is involved in the regulation of insulin secretion, in the resistance to infection, and in atherosclerosis. Here, we investigated the role of UCP2 in experimental autoimmune encephalomyelitis, a murine model of multiple sclerosis. Immunized C57BL/6J UCP2-deficient mice showed a slightly delayed onset during experimental autoimmune encephalomyelitis (13.0 +/- 0.6 versus 11.5 +/- 0.8 in wild-type controls) and developed significantly higher disease scores than littermate controls (maximum disease score of 2.9 +/- 0.2 versus 1.7 +/- 0.2, P = 0.001). Higher levels of infiltrating T cells into the spinal cord meninges and parenchyma were observed. The T-cell proliferative response to the specific antigen was increased in UCP2-deficient mice compared with littermate controls, and CD4 cells of UCP2 knockout mice produced significantly higher levels of pro-inflammatory cytokines, eg, tumor necrosis factor-alpha and interleukin-2, resulting from a Th1 response. Mice lacking UCP2 also developed a higher B-cell response. Concomitantly, CD4 and CD8 cells of the UCP2-deficient mice showed increased production of reactive oxygen species. These results suggest a protective function of UCP2 in chronic inflammatory diseases such as multiple sclerosis.
Assuntos
Encefalomielite Autoimune Experimental/imunologia , Linfonodos/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Proteínas Mitocondriais/fisiologia , Medula Espinal/metabolismo , Baço/metabolismo , Animais , Encefalomielite Autoimune Experimental/prevenção & controle , Glicoproteínas/farmacologia , Imunidade Celular , Imunização , Canais Iônicos , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/genética , Mutação , Glicoproteína Mielina-Oligodendrócito , Especificidade de Órgãos , Fragmentos de Peptídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Proteína Desacopladora 2RESUMO
Experimental autoimmune encephalomyelitis (EAE) is a polygenic chronic inflammatory demyelinating disease of the nervous system, commonly used as an animal model of multiple sclerosis. Previous studies have identified multiple quantitative trait loci (QTLs) controlling different aspects of disease pathogenesis. However, direct genetic control of cortical motor evoked potentials (cMEPs) as a straightforward measure of extent of demyelination or synaptic block has not been investigated earlier. Here, we examined the genetic control of different traits of EAE in a F2 intercross population generated from the EAE susceptible SJL/J (SJL) and the EAE resistant C57BL/10.S (B10.S) mouse strains involving 400 animals. The genotypes of 150 microsatellite markers were determined in each animal and correlated to phenotypic data of onset and severity of disease, cell infiltration and cMEPs. Nine QTLs were identified. Three sex-linked QTLs mapped to chromosomes 2, 10 and 18 linked to disease severity in females, whereas QTLs on chromosomes 1, 8 and 15 linked to the latency of the cMEPs. QTLs affecting T-lymphocyte, B-lymphocyte and microglia infiltration mapped on chromosomes 8 and 15. The cMEP-associated QTLs correlated with incidence, onset or severity of disease, e.g. QTL on chromosome 8, 32-48 cM (EAE 31) (LOD 6.9, P<0.001), associated to cMEP latencies in non-immunized mice and correlated with disease onset and EAE 32 on chromosome 15 linked to cMEP latencies 15 days post-immunization and correlated with disease severity. Additionally, applying tissue microarray technology, we identified QTLs associated to microglia and lymphocytes infiltration on chromosomes 8 and 15, which are different from the QTLs controlling cMEP latencies. There were no alterations in the morphological appearance of the myelin sheaths. Our findings suggest a possible role of myelin composition and/or synaptic transmission in susceptibility to EAE.