Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nature ; 608(7921): 161-167, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35896747

RESUMO

Invasive fungal pathogens are major causes of human mortality and morbidity1,2. Although numerous secreted effector proteins that reprogram innate immunity to promote virulence have been identified in pathogenic bacteria, so far, there are no examples of analogous secreted effector proteins produced by human fungal pathogens. Cryptococcus neoformans, the most common cause of fungal meningitis and a major pathogen in AIDS, induces a pathogenic type 2 response characterized by pulmonary eosinophilia and alternatively activated macrophages3-8. Here, we identify CPL1 as an effector protein secreted by C. neoformans that drives alternative activation (also known as M2 polarization) of macrophages to enable pulmonary infection in mice. We observed that CPL1-enhanced macrophage polarization requires Toll-like receptor 4, which is best known as a receptor for bacterial endotoxin but is also a poorly understood mediator of allergen-induced type 2 responses9-12. We show that this effect is caused by CPL1 itself and not by contaminating lipopolysaccharide. CPL1 is essential for virulence, drives polarization of interstitial macrophages in vivo, and requires type 2 cytokine signalling for its effect on infectivity. Notably, C. neoformans associates selectively with polarized interstitial macrophages during infection, suggesting a mechanism by which C. neoformans generates its own intracellular replication niche within the host. This work identifies a circuit whereby a secreted effector protein produced by a human fungal pathogen reprograms innate immunity, revealing an unexpected role for Toll-like receptor 4 in promoting the pathogenesis of infectious disease.


Assuntos
Criptococose , Cryptococcus neoformans , Proteínas Fúngicas , Hipersensibilidade , Inflamação , Receptor 4 Toll-Like , Fatores de Virulência , Animais , Criptococose/imunologia , Criptococose/microbiologia , Criptococose/patologia , Cryptococcus neoformans/imunologia , Cryptococcus neoformans/patogenicidade , Citocinas/imunologia , Proteínas Fúngicas/imunologia , Proteínas Fúngicas/metabolismo , Hipersensibilidade/imunologia , Hipersensibilidade/microbiologia , Imunidade Inata , Inflamação/imunologia , Inflamação/microbiologia , Lipopolissacarídeos/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Virulência , Fatores de Virulência/imunologia
2.
PLoS Biol ; 20(8): e3001759, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36026468

RESUMO

Lung branching morphogenesis requires reciprocal interactions between the epithelium and mesenchyme. How the lung branches are generated at a defined location and projected toward a specific direction remains a major unresolved issue. In this study, we investigated the function of Wnt signaling in lung branching in mice. We discovered that Wnt5a in both the epithelium and the mesenchyme plays an essential role in controlling the position and direction of lung branching. The Wnt5a signal is mediated by Vangl1/2 to trigger a cascade of noncanonical or planar cell polarity (PCP) signaling. In response to noncanonical Wnt signaling, lung cells undergo cytoskeletal reorganization and change focal adhesions. Perturbed focal adhesions in lung explants are associated with defective branching. Moreover, we observed changes in the shape and orientation of the epithelial sheet and the underlying mesenchymal layer in regions of defective branching in the mutant lungs. Thus, PCP signaling helps define the position and orientation of the lung branches. We propose that mechanical force induced by noncanonical Wnt signaling mediates a coordinated alteration in the shape and orientation of a group of epithelial and mesenchymal cells. These results provide a new framework for understanding the molecular mechanisms by which a stereotypic branching pattern is generated.


Assuntos
Adesões Focais , Proteínas Wnt , Animais , Citoesqueleto/metabolismo , Adesões Focais/metabolismo , Pulmão , Camundongos , Morfogênese , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt
3.
Chembiochem ; 22(8): 1448-1455, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33314683

RESUMO

Microbial bile salt hydrolases (BSHs) found in the intestine catalyze the deconjugation of taurine- and glycine-linked bile salts produced in the liver. The resulting bile salts are biological detergents and are critical in aiding lipophilic nutrient digestion. Therefore, the activity of BSHs in the gut microbiome is directly linked to human metabolism and overall health. Bile salt metabolism has also been associated with disease phenotypes such as liver and colorectal cancer. In order to reshape the gut microbiome to optimize bile salt metabolism, tools to characterize and quantify these processes must exist to enable a much-improved understanding of how metabolism goes awry in the face of disease, and how it can be improved through an altered lifestyle and environment. Furthermore, it is necessary to attribute metabolic activity to specific members and BSHs within the microbiome. To this end, we have developed activity-based probes with two different reactive groups to target bile salt hydrolases. These probes bind similarly to the authentic bile salt substrates, and we demonstrate enzyme labeling of active bile salt hydrolases by using purified protein, cell lysates, and in human stool.


Assuntos
Acrilamida/química , Amidoidrolases/metabolismo , Ácidos e Sais Biliares/metabolismo , Corantes Fluorescentes/química , beta-Lactamas/química , Acrilamida/síntese química , Acrilamida/metabolismo , Amidoidrolases/química , Ácidos e Sais Biliares/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Microbioma Gastrointestinal , Humanos , Hidrólise , Estrutura Molecular , beta-Lactamas/síntese química , beta-Lactamas/metabolismo
4.
Chem Res Toxicol ; 33(2): 414-425, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31872761

RESUMO

Acute and chronic exposures to organophosphates (OPs), including agricultural pesticides, industrial chemicals, and chemical warfare agents, remain a significant worldwide health risk. The mechanisms by which OPs alter development and cognition in exposed individuals remain poorly understood, in part due to the large number of structurally diverse OPs and the wide range of affected proteins and signaling pathways. To investigate the influence of structure on OP targets in mammalian systems, we have developed a series of probes for activity-based protein profiling (ABPP) featuring two distinct reactive groups that mimic OP chemical reactivity. FOP features a fluorophosphonate moiety, and PODA and CODA utilize a dialkynyl phosphate ester; both reactive group types target serine hydrolase activity. As the oxon represents the highly reactive and toxic functional group of many OPs, the new probes described herein enhance our understanding of tissue-specific reactivity of OPs. Chemoproteomic analysis of mouse tissues treated with the probes revealed divergent protein profiles, demonstrating the influence of probe structure on protein targeting. These targets also vary in sensitivity toward different OPs. The simultaneous use of multiple probes in ABPP experiments may therefore offer more comprehensive coverage of OP targets; FOP consistently labeled more targets in both brain and liver than PODA or CODA, suggesting the dialkyne warhead is more selective for enzymes in major signaling pathways than the more reactive fluorophosphonate warhead. Additionally, the probes can be used to assess reactivation of OP-inhibited enzymes by N-oximes and may serve as diagnostic tools for screening of therapeutic candidates in a panel of protein targets. These applications will help clarify the short- and long-term effects of OP toxicity beyond acetylcholinesterase inhibition, investigate potential points of convergence for broad spectrum therapeutic development, and support future efforts to screen candidate molecules for efficacy in various model systems.


Assuntos
Encéfalo/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Fígado/efeitos dos fármacos , Organofosfatos/farmacologia , Acetilcolinesterase/metabolismo , Animais , Encéfalo/metabolismo , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Electrophorus , Fígado/metabolismo , Camundongos , Estrutura Molecular , Organofosfatos/química
5.
J Am Chem Soc ; 141(1): 42-47, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30541282

RESUMO

Commensal microorganisms in the mammalian gut play important roles in host health and physiology, but a central challenge remains in achieving a detailed mechanistic understanding of specific microbial contributions to host biochemistry. New function-based approaches are needed that analyze gut microbial function at the molecular level by coupling detection and measurements of in situ biochemical activity with identification of the responsible microbes and enzymes. We developed a platform employing ß-glucuronidase selective activity-based probes to detect, isolate, and identify microbial subpopulations in the gut responsible for this xenobiotic metabolism. We find that metabolic activity of gut microbiota can be plastic and that between individuals and during perturbation, phylogenetically disparate populations can provide ß-glucuronidase activity. Our work links biochemical activity with molecular-scale resolution without relying on genomic inference.


Assuntos
Microbioma Gastrointestinal , Sondas Moleculares/metabolismo , Glucuronidase/metabolismo , Sondas Moleculares/química , Xenobióticos/metabolismo
6.
J Proteome Res ; 17(8): 2623-2634, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29972024

RESUMO

Lung diseases and disorders are a leading cause of death among infants. Many of these diseases and disorders are caused by premature birth and underdeveloped lungs. In addition to developmentally related disorders, the lungs are exposed to a variety of environmental contaminants and xenobiotics upon birth that can cause breathing issues and are progenitors of cancer. In order to gain a deeper understanding of the developing lung, we applied an activity-based chemoproteomics approach for the functional characterization of the xenometabolizing cytochrome P450 enzymes, active ATP and nucleotide binding enzymes, and serine hydrolases using a suite of activity-based probes (ABPs). We detected P450 activity primarily in the postnatal lung; using our ATP-ABP, we characterized a wide range of ATPases and other active nucleotide- and nucleic acid-binding enzymes involved in multiple facets of cellular metabolism throughout development. ATP-ABP targets include kinases, phosphatases, NAD- and FAD-dependent enzymes, RNA/DNA helicases, and others. The serine hydrolase-targeting probe detected changes in the activities of several proteases during the course of lung development, yielding insights into protein turnover at different stages of development. Select activity-based probe targets were then correlated with RNA in situ hybridization analyses of lung tissue sections.


Assuntos
Pulmão/enzimologia , Proteômica , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Lactente , Recém-Nascido , Pulmão/química , Pulmão/crescimento & desenvolvimento , Nucleotídeos/metabolismo , Serina Endopeptidases/metabolismo
7.
J Am Chem Soc ; 139(45): 16032-16035, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29068682

RESUMO

Glutathione S-transferases (GSTs) comprise a diverse family of phase II drug metabolizing enzymes whose shared function is the conjugation of reduced glutathione (GSH) to endo- and xenobiotics. Although the conglomerate activity of these enzymes can be measured, the isoform-specific contribution to the metabolism of xenobiotics in complex biological samples has not been possible. We have developed two activity-based probes (ABPs) that characterize active GSTs in mammalian tissues. The GST active site is composed of a GSH binding "G site" and a substrate binding "H site". Therefore, we developed (1) a GSH-based photoaffinity probe (GSTABP-G) to target the "G site", and (2) an ABP designed to mimic a substrate molecule and have "H site" activity (GSTABP-H). The GSTABP-G features a photoreactive moiety for UV-induced covalent binding to GSTs and GSH-binding enzymes. The GSTABP-H is a derivative of a known mechanism-based GST inhibitor that binds within the active site and inhibits GST activity. Validation of probe targets and "G" and "H" site specificity was carried out using a series of competition experiments in the liver. Herein, we present robust tools for the characterization of enzyme- and active site-specific GST activity in mammalian model systems.


Assuntos
Glutationa Transferase/metabolismo , Marcadores de Fotoafinidade/metabolismo , Animais , Sítios de Ligação , Domínio Catalítico , Glutationa/metabolismo , Glutationa Transferase/antagonistas & inibidores , Glutationa Transferase/química , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/metabolismo , Fígado/enzimologia , Pulmão/enzimologia , Camundongos , Marcadores de Fotoafinidade/química , Ligação Proteica
8.
Protein Sci ; 33(10): e5173, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39291732

RESUMO

Almost all types of cellular stress induce post-translational O-GlcNAc modifications of proteins, and this increase promotes cell survival. We previously demonstrated that O-GlcNAc on certain small heat shock proteins (sHSPs), including HSP27, directly increases their chaperone activity as one potential protective mechanism. Here, we furthered our use of synthetic proteins to prepare biotinylated sHSPs and show that O-GlcNAc modification of HSP27 also changes how it interacts within the sHSP system and the broader HSP network. Specifically, we show that O-GlcNAc modified HSP27 binds more strongly to the co-chaperone protein BAG3, which then promotes refolding of a model substrate by HSP70. We use proteomics to identify other potential HSP27 interactions that are changed by O-GlcNAc, including one that we confirm with another sHSP, αB-crystallin. These findings add additional evidence for O-GlcNAc as a switch for regulating protein-protein interactions and for modifications of chaperones as one mechanism by which O-GlcNAc protects against protein aggregation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Chaperonas Moleculares , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/química , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP27/química , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/química , Acetilglucosamina/metabolismo , Acetilglucosamina/química , Redobramento de Proteína , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/química , Ligação Proteica , Cadeia B de alfa-Cristalina/química , Cadeia B de alfa-Cristalina/metabolismo , Processamento de Proteína Pós-Traducional
9.
bioRxiv ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38746193

RESUMO

Innate immunity, the first line of defense against pathogens, relies on efficient elimination of invading agents by phagocytes. In the co-evolution of host and pathogen, pathogens developed mechanisms to dampen and evade phagocytic clearance. Here, we report that bacterial pathogens can evade clearance by macrophages through mimicry at the mammalian anti-phagocytic "don't eat me" signaling axis between CD47 (ligand) and SIRPα (receptor). We identified a protein, P66, on the surface of Borrelia burgdorferi that, like CD47, is necessary and sufficient to bind the macrophage receptor SIRPα. Expression of the gene encoding the protein is required for bacteria to bind SIRPα or a high-affinity CD47 reagent. Genetic deletion of p66 increases phagocytosis by macrophages. Blockade of P66 during infection promotes clearance of the bacteria. This study demonstrates that mimicry of the mammalian anti-phagocytic protein CD47 by B. burgdorferi inhibits macrophage-mediated bacterial clearance. Such a mechanism has broad implications for understanding of host-pathogen interactions and expands the function of the established innate immune checkpoint receptor SIRPα. Moreover, this report reveals P66 as a novel therapeutic target in the treatment of Lyme Disease.

10.
mBio ; 14(5): e0157323, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37642463

RESUMO

IMPORTANCE: This work has broad relevance due to the ubiquity of dyes containing azo bonds in food and drugs. We report that azo dyes can be degraded by human gut bacteria through both enzymatic and nonenzymatic mechanisms, even from a single gut bacterial species. Furthermore, we revealed that environmental factors, oxygen, and L-Cysteine control the ability of E. coli to degrade azo dyes due to their impacts on bacterial transcription and metabolism. These results open up new opportunities to manipulate the azoreductase activity of the gut microbiome through the manipulation of host diet, suggest that azoreductase potential may be altered in patients suffering from gastrointestinal disease, and highlight the importance of studying bacterial enzymes for drug metabolism in their natural cellular and ecological context.


Assuntos
Proteínas de Escherichia coli , Proteínas Ferro-Enxofre , Humanos , Corantes/metabolismo , Anaerobiose , Escherichia coli/metabolismo , Bactérias/metabolismo , Compostos Azo/química , Compostos Azo/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Proteínas de Bactérias/metabolismo
11.
Elife ; 122023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37449477

RESUMO

Borrelia burgdorferi (Bb), the causative agent of Lyme disease, adapts to vastly different environments as it cycles between tick vector and vertebrate host. During a tick bloodmeal, Bb alters its gene expression to prepare for vertebrate infection; however, the full range of transcriptional changes that occur over several days inside of the tick are technically challenging to capture. We developed an experimental approach to enrich Bb cells to longitudinally define their global transcriptomic landscape inside nymphal Ixodes scapularis ticks during a transmitting bloodmeal. We identified 192 Bb genes that substantially change expression over the course of the bloodmeal from 1 to 4 days after host attachment. The majority of upregulated genes encode proteins found at the cell envelope or proteins of unknown function, including 45 outer surface lipoproteins embedded in the unusual protein-rich coat of Bb. As these proteins may facilitate Bb interactions with the host, we utilized mass spectrometry to identify candidate tick proteins that physically associate with Bb. The Bb enrichment methodology along with the ex vivo Bb transcriptomes and candidate tick interacting proteins presented here provide a resource to facilitate investigations into key determinants of Bb priming and transmission during the tick stage of its unique transmission cycle.


Assuntos
Borrelia burgdorferi , Ixodes , Doença de Lyme , Animais , Borrelia burgdorferi/genética , Transcriptoma , Proteínas de Artrópodes
12.
RSC Chem Biol ; 3(6): 783-793, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35755185

RESUMO

Macrophages play a vital role in the innate immune system, identifying and destroying unwanted cells. However, it has been difficult to attain a comprehensive understanding of macrophage protein abundance due to technical limitations. In addition, it remains unclear how changes in proteome composition are linked to phagocytic activity. In this study we developed methods to derive human macrophages and prepare them for mass spectrometry analysis in order to more-deeply understand the proteomic consequences of macrophage stimulation. Interferon gamma (IF-g), an immune stimulating cytokine, was used to induce macrophage activation, increasing phagocytosis of cancer cells by 2-fold. These conditions were used to perform comparative shotgun proteomics between resting macrophages and stimulated macrophages with increased phagocytic activity. Our analysis revealed that macrophages bias their protein production toward biological processes associated with phagocytosis and antigen processing in response to stimulation. We confirmed our findings by antibody-based western blotting experiments, validating both previously reported and novel proteins of interest. In addition to whole protein changes, we evaluated active protein synthesis by treating cells with the methionine surrogate probe homopropargylglycine (HPG). We saw increased rates of HPG incorporation during phagocytosis-inducing stimulation, suggesting protein synthesis rates are altered by stimulation. Together our findings provide the most comprehensive proteomic insight to date into primary human macrophages. We anticipate that this data can be used as a launchpoint to generate new hypotheses about innate immune function.

13.
Cell Chem Biol ; 29(5): 785-798.e19, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35364007

RESUMO

Viruses are responsible for some of the most deadly human diseases, yet available vaccines and antivirals address only a fraction of the potential viral human pathogens. Here, we provide a methodology for managing human herpesvirus (HHV) infection by covalently inactivating the HHV maturational protease via a conserved, non-catalytic cysteine (C161). Using human cytomegalovirus protease (HCMV Pr) as a model, we screened a library of disulfides to identify molecules that tether to C161 and inhibit proteolysis, then elaborated hits into irreversible HCMV Pr inhibitors that exhibit broad-spectrum inhibition of other HHV Pr homologs. We further developed an optimized tool compound targeted toward HCMV Pr and used an integrative structural biology and biochemical approach to demonstrate inhibitor stabilization of HCMV Pr homodimerization, exploiting a conformational equilibrium to block proteolysis. Irreversible HCMV Pr inhibition disrupts HCMV infectivity in cells, providing proof of principle for targeting proteolysis via a non-catalytic cysteine to manage viral infection.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Cisteína , Citomegalovirus/fisiologia , Humanos , Peptídeo Hidrolases , Proteases Virais
14.
ACS Chem Biol ; 17(6): 1440-1449, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35587148

RESUMO

Covalent inhibitors are viable therapeutics. However, off-target reactivity challenges the field. Chemists have attempted to solve this issue by varying the reactivity attributes of electrophilic warheads. Here, we report the development of an approach to increase the selectivity of covalent molecules that is independent of warhead reactivity features and can be used in concert with existing methods. Using the scaffold of the Bruton's tyrosine kinase (BTK) inhibitor Ibrutinib for our proof-of-concept, we reasoned that increasing the steric bulk of fumarate-based electrophiles on Ibrutinib should improve selectivity via the steric exclusion of off-targets but retain rates of cysteine reactivity comparable to that of an acrylamide. Using chemical proteomic techniques, we demonstrate that elaboration of the electrophile to a tert-butyl (t-Bu) fumarate ester decreases time-dependent off-target reactivity and abolishes time-independent off-target reactivity. While an alkyne-bearing probe analogue of Ibrutinib has 247 protein targets, our t-Bu fumarate probe analogue has only 7. Of these 7 targets, BTK is the only time-independent target. The t-Bu inhibitor itself is also more selective for BTK, reducing off-targets by 70%. We investigated the consequences of treatment with Ibrutinib and our t-Bu analogue and discovered that only 8 proteins are downregulated in response to treatment with the t-Bu analogue compared to 107 with Ibrutinib. Of these 8 proteins, 7 are also downregulated by Ibrutinib and a majority of these targets are associated with BTK biology. Taken together, these findings reveal an opportunity to increase cysteine-reactive covalent inhibitor selectivity through electrophilic structure optimization.


Assuntos
Inibidores de Proteínas Quinases , Proteômica , Tirosina Quinase da Agamaglobulinemia/metabolismo , Cisteína , Fumaratos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA