Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Soft Matter ; 20(5): 1114-1119, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38224143

RESUMO

Kirigami-inspired designs can enable self-folding three-dimensional materials from flat, two-dimensional sheets. Hierarchical designs of connected levels increase the diversity of possible target structures, yet they can lead to longer folding times in the presence of fluctuations. Here, we study the effect of rotational coupling between levels on the self-folding of two-level kirigami designs driven by thermal noise in a fluid. Naturally present due to hydrodynamic resistance, we find that this coupling parameter can significantly impact a structure's self-folding pathway, thus enabling us to assess the quality of a kirigami design and the possibility for its optimization in terms of its folding rate and yield.

2.
Soft Matter ; 19(9): 1695-1704, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36779972

RESUMO

Self-organisation is the spontaneous emergence of spatio-temporal structures and patterns from the interaction of smaller individual units. Examples are found across many scales in very different systems and scientific disciplines, from physics, materials science and robotics to biology, geophysics and astronomy. Recent research has highlighted how self-organisation can be both mediated and controlled by confinement. Confinement is an action over a system that limits its units' translational and rotational degrees of freedom, thus also influencing the system's phase space probability density; it can function as either a catalyst or inhibitor of self-organisation. Confinement can then become a means to actively steer the emergence or suppression of collective phenomena in space and time. Here, to provide a common framework and perspective for future research, we examine the role of confinement in the self-organisation of soft-matter systems and identify overarching scientific challenges that need to be addressed to harness its full scientific and technological potential in soft matter and related fields. By drawing analogies with other disciplines, this framework will accelerate a common deeper understanding of self-organisation and trigger the development of innovative strategies to steer it using confinement, with impact on, e.g., the design of smarter materials, tissue engineering for biomedicine and in guiding active matter.

3.
Soft Matter ; 18(36): 6899-6906, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36043894

RESUMO

The presence of obstacles is intuitively expected to hinder the diffusive transport of active particles. However, for chiral active particles, a low density of obstacles near a surface can enhance their diffusive behavior. Here, we study numerically the role that disorder plays in determining the transport dynamics of chiral active particles on surfaces with obstacles. We consider different densities of regularly spaced obstacles and distinct types of disorder: noise in the dynamics of the particle, quenched noise in the positions of the obstacles as well as obstacle size polydispersity. We show that, depending on the type and strength of the disorder, the presence of obstacles can either enhance or hinder transport, and discuss implications for the control of active transport in disordered media.

4.
Chem Soc Rev ; 49(22): 7879-7892, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-32500897

RESUMO

Droplets moving on solid surfaces are at the heart of many phenomena of fundamental and applied interest in chemistry, physics and materials science. On the fundamental side, as they are often subject to evaporation, these droplets are a beautiful and complex example of non-equilibrium physical chemistry, whose explanation and understanding still capture the imagination of multiple researchers around the world. In technology, droplets on solid surfaces are of widespread use for handling small amounts of matter, for harvesting energy, for manufacturing materials and for sensing chemical and biological analytes. A key underlying factor of their widespread applicability is the degree of control that can be achieved over their transport on surfaces. This tutorial review provides an overview of recent progress towards the programmable transport of droplets on solid surfaces. We will first present the physical principles behind the main experimental strategies for droplet transport. We will then review the most inspiring applications where these strategies have been employed in chemistry, materials science and engineering. Finally, we will outline possible future research directions for the programmable transport of droplets. Beyond projecting the reader at the forefront of this exciting field of physical chemistry, we believe that this tutorial review will inspire diverse, multidisciplinary scientific communities to devise novel ways of manipulating the flow of matter, energy and information on solid surfaces using programmable droplets as vessels.

5.
Nano Lett ; 20(5): 3291-3298, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32243180

RESUMO

We demonstrate the local optimization of nonlinear luminescence from disordered gold metasurfaces by shaping the phase of femtosecond excitation. This process is enabled by the far-field wavefront control of plasmonic modes delocalized over the sample surface, leading to a coherent enhancement of subwavelength electric fields. In practice, the increase in nonlinear luminescence is strongly sensitive to both the nanometer-scale morphology and the level of structural complexity of the gold metasurface. We typically observe a 2 orders of magnitude enhancement of the luminescence signal for an optimized excitation wavefront compared to a random one. These results demonstrate how disordered metasurfaces made of randomly coupled plasmonic resonators, together with wavefront shaping, provide numerous degrees of freedom to program locally optimized nonlinear responses and optical hotspots.

6.
Phys Rev Lett ; 125(9): 098001, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32915612

RESUMO

We apply laser light to induce the asymmetric heating of Janus colloids adsorbed at water-oil interfaces and realize active micrometric "Marangoni surfers." The coupling of temperature and surfactant concentration gradients generates Marangoni stresses leading to self-propulsion. Particle velocities span 4 orders of magnitude, from microns/s to cm/s, depending on laser power and surfactant concentration. Experiments are rationalized by finite elements simulations, defining different propulsion regimes relative to the magnitude of the thermal and solutal Marangoni stress components.

7.
Soft Matter ; 16(17): 4267-4273, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32307474

RESUMO

Structural defects are ubiquitous in condensed matter, and not always a nuisance. For example, they underlie phenomena such as Anderson localization and hyperuniformity, and they are now being exploited to engineer novel materials. Here, we show experimentally that the density of structural defects in a 2D binary colloidal crystal can be engineered with a random potential. We generate the random potential using an optical speckle pattern, whose induced forces act strongly on one species of particles (strong particles) and weakly on the other (weak particles). Thus, the strong particles are more attracted to the randomly distributed local minima of the optical potential, leaving a trail of defects in the crystalline structure of the colloidal crystal. While, as expected, the crystalline ordering initially decreases with an increasing fraction of strong particles, the crystalline order is surprisingly recovered for sufficiently large fractions. We confirm our experimental results with particle-based simulations, which permit us to elucidate how this non-monotonic behavior results from the competition between the particle-potential and particle-particle interactions.

8.
Proc Natl Acad Sci U S A ; 114(43): 11350-11355, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29073055

RESUMO

In environments with scarce resources, adopting the right search strategy can make the difference between succeeding and failing, even between life and death. At different scales, this applies to molecular encounters in the cell cytoplasm, to animals looking for food or mates in natural landscapes, to rescuers during search and rescue operations in disaster zones, and to genetic computer algorithms exploring parameter spaces. When looking for sparse targets in a homogeneous environment, a combination of ballistic and diffusive steps is considered optimal; in particular, more ballistic Lévy flights with exponent [Formula: see text] are generally believed to optimize the search process. However, most search spaces present complex topographies. What is the best search strategy in these more realistic scenarios? Here, we show that the topography of the environment significantly alters the optimal search strategy toward less ballistic and more Brownian strategies. We consider an active particle performing a blind cruise search for nonregenerating sparse targets in a 2D space with steps drawn from a Lévy distribution with the exponent varying from [Formula: see text] to [Formula: see text] (Brownian). We show that, when boundaries, barriers, and obstacles are present, the optimal search strategy depends on the topography of the environment, with [Formula: see text] assuming intermediate values in the whole range under consideration. We interpret these findings using simple scaling arguments and discuss their robustness to varying searcher's size. Our results are relevant for search problems at different length scales from animal and human foraging to microswimmers' taxis to biochemical rates of reaction.

9.
Soft Matter ; 15(7): 1488-1496, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30570633

RESUMO

How particles are deposited at the edge of evaporating droplets, i.e. the coffee ring effect, plays a crucial role in phenomena as diverse as thin-film deposition, self-assembly, and biofilm formation. Recently, microorganisms have been shown to passively exploit and alter these deposition dynamics to increase their survival chances under harshening conditions. Here, we show that, as the droplet evaporation rate slows down, bacterial mobility starts playing a major role in determining the growth dynamics of the edge of drying droplets. Such motility-induced dynamics can influence several biophysical phenomena, from the formation of biofilms to the spreading of pathogens in humid environments and on surfaces subject to periodic drying. Analogous dynamics in other active matter systems can be exploited for technological applications in printing, coating, and self-assembly, where the standard coffee-ring effect is often a nuisance.

10.
Phys Rev Lett ; 116(25): 253901, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27391722

RESUMO

We report the broadband characterization of the propagation of light through a multiple scattering medium by means of its multispectral transmission matrix. Using a single spatial light modulator, our approach enables the full control of both the spatial and spectral properties of an ultrashort pulse transmitted through the medium. We demonstrate spatiotemporal focusing of the pulse at any arbitrary position and time with any desired spectral shape. Our approach opens new perspectives for fundamental studies of light-matter interaction in disordered media, and has potential applications in sensing, coherent control, and imaging.

11.
Opt Express ; 22(15): 18159-67, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25089434

RESUMO

Current optical manipulation techniques rely on carefully engineered setups and samples. Although similar conditions are routinely met in research laboratories, it is still a challenge to manipulate microparticles when the environment is not well controlled and known a priori, since optical imperfections and scattering limit the applicability of this technique to real-life situations, such as in biomedical or microfluidic applications. Nonetheless, scattering of coherent light by disordered structures gives rise to speckles, random diffraction patterns with well-defined statistical properties. Here, we experimentally demonstrate how speckle fields can become a versatile tool to efficiently perform fundamental optical manipulation tasks such as trapping, guiding and sorting. We anticipate that the simplicity of these "speckle optical tweezers" will greatly broaden the perspectives of optical manipulation for real-life applications.

12.
Nano Lett ; 13(9): 4299-304, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23915079

RESUMO

Fully exploiting the capability of nano-optics to enhance light-matter interaction on the nanoscale is conditioned by bringing the nano-object to interrogate within the minuscule volume where the field is concentrated. There currently exists several approaches to control the immobilization of nano-objects but they all involve a cumbersome delivery step and require prior knowledge of the "hot spot" location. Herein, we present a novel technique in which the enhanced local field in the hot spot is the driving mechanism that triggers the binding of proteins via three-photon absorption. This way, we demonstrate exclusive immobilization of nanoscale amounts of bovine serum albumin molecules into the nanometer-sized gap of plasmonic dimers. The immobilized proteins can then act as a scaffold to subsequently attach an additional nanoscale object such as a molecule or a nanocrystal. This universal technique is envisioned to benefit a wide range of nano-optical functionalities including biosensing, enhanced spectroscopy like surface-enhanced Raman spectroscopy or surface-enhanced infrared absorption spectroscopy, as well as quantum optics.

13.
Nano Lett ; 12(9): 4864-8, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22894567

RESUMO

Mapping the optical near-field response around nanoantennas is a challenging yet indispensable task to engineer light-matter interaction at the nanometer scale. Recently, photosensitive molecular probes, which undergo morphological or chemical changes induced by the local optical response of the nanostructures, have been proposed as a handy alternative to more cumbersome optical and electron-based techniques. Here, we report four-photon absorption in poly(methyl methacrylate) (PMMA) as a very promising tool for nanoimaging the optical near-field around nanostructures over a broad range of near-infrared optical wavelengths. The high performance of our approach is demonstrated on single-rod antennas and coupled gap antennas by comparing experimental maps with 3D numerical simulations of the electric near-field intensity.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica/métodos , Imagem Molecular/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Polimetil Metacrilato/química , Ressonância de Plasmônio de Superfície/métodos , Absorção , Luz , Teste de Materiais/métodos , Tamanho da Partícula , Espalhamento de Radiação
14.
ACS Photonics ; 10(5): 1188-1201, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37215318

RESUMO

Light carries energy and momentum. It can therefore alter the motion of objects on the atomic to astronomical scales. Being widely available, readily controllable, and broadly biocompatible, light is also an ideal tool to propel microscopic particles, drive them out of thermodynamic equilibrium, and make them active. Thus, light-driven particles have become a recent focus of research in the field of soft active matter. In this Perspective, we discuss recent advances in the control of soft active matter with light, which has mainly been achieved using light intensity. We also highlight some first attempts to utilize light's additional properties, such as its wavelength, polarization, and momentum. We then argue that fully exploiting light with all of its properties will play a critical role in increasing the level of control over the actuation of active matter as well as the flow of light itself through it. This enabling step will advance the design of soft active matter systems, their functionalities, and their transfer toward technological applications.

15.
Nat Commun ; 14(1): 7324, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957196

RESUMO

The formation of groups of interacting individuals improves performance and fitness in many decentralised systems, from micro-organisms to social insects, from robotic swarms to artificial intelligence algorithms. Often, group formation and high-level coordination in these systems emerge from individuals with limited information-processing capabilities implementing low-level rules of communication to signal to each other. Here, we show that, even in a community of clueless individuals incapable of processing information and communicating, a dynamic environment can coordinate group formation by transiently storing memory of the earlier passage of individuals. Our results identify a new mechanism of indirect coordination via shared memory that is primarily promoted and reinforced by dynamic environmental factors, thus overshadowing the need for any form of explicit signalling between individuals. We expect this pathway to group formation to be relevant for understanding and controlling self-organisation and collective decision making in both living and artificial active matter in real-life environments.


Assuntos
Inteligência Artificial , Robótica , Humanos , Cognição , Algoritmos , Comunicação
16.
Phys Rev Lett ; 108(21): 217403, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-23003302

RESUMO

We introduce and experimentally demonstrate the concept of multifrequency optical antennas that are designed for controlling the nonlinear response of materials. These antennas consist of two arms of different lengths, each resonant with one of the incoming frequencies. They are embedded in a nonlinear medium (indium tin oxide) that acts as a receiver. Because the two arms have different spectral resonances, tuning of the antenna gap size has minimal effect on the linear optical properties. However, it strongly affects the nonlinear response. Thus, by employing antenna elements with different spectral resonances, we provide a strategy to decouple the nonlinear response of nanomaterials from their linear optical properties.

17.
NPJ Microgravity ; 8(1): 54, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434006

RESUMO

In the last 20 years, active matter has been a highly dynamic field of research, bridging fundamental aspects of non-equilibrium thermodynamics with applications to biology, robotics, and nano-medicine. Active matter systems are composed of units that can harvest and harness energy and information from their environment to generate complex collective behaviours and forms of self-organisation. On Earth, gravity-driven phenomena (such as sedimentation and convection) often dominate or conceal the emergence of these dynamics, especially for soft active matter systems where typical interactions are of the order of the thermal energy. In this review, we explore the ongoing and future efforts to study active matter in space, where low-gravity and microgravity conditions can lift some of these limitations. We envision that these studies will help unify our understanding of active matter systems and, more generally, of far-from-equilibrium physics both on Earth and in space. Furthermore, they will also provide guidance on how to use, process and manufacture active materials for space exploration and colonisation.

18.
Opt Express ; 19(4): 3612-8, 2011 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-21369185

RESUMO

Plasmonic nanostructures offer a great potential to enhance light-matter interaction at the nanometer scale. The response upon illumination at a given wavelength and polarization is governed by the characteristic lengths associated to the shape and size of the nanostructure. Here, we propose the use of engineered fractal plasmonic structures to extend the degrees of freedom and the parameters available for their design. In particular, we focus on a paradigmatic fractal geometry, namely the Sierpinski carpet. We explore the possibility of using it to achieve a controlled broadband spectral response by controlling the degree of its fractal complexity. Furthermore, we investigate some other arising properties, such as subdiffraction limited focusing and its potential use for optical trapping of nano-objects. An attractive advantage of the focusing over more standard geometries, such as gap antennas, is that it occurs away from the metal surface (≈ 80 nm) at the center of the nanostructure, leaving an open space accessible to objects for enhanced light-matter interaction.

19.
Adv Sci (Weinh) ; 8(14): 2100139, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34306975

RESUMO

Disordered optical media are an emerging class of materials that can strongly scatter light. These materials are useful to investigate light transport phenomena and for applications in imaging, sensing and energy storage. While coherent light can be generated using such materials, its directional emission is typically hampered by their strong scattering nature. Here, the authors directly image Rayleigh scattering, photoluminescence and weakly localized Raman light from a random network of silicon nanowires via real-space microscopy and Fourier imaging. Direct imaging enables us to gain insight on the light transport mechanisms in the random material, to visualize its weak localization length and to demonstrate out-of-plane beaming of the scattered coherent Raman light. The direct visualization of coherent light beaming in such random networks of silicon nanowires offers novel opportunities for fundamental studies of light propagation in disordered media. It also opens venues for the development of next generation optical devices based on disordered structures, such as sensors, light sources, and optical switches.

20.
Nat Commun ; 12(1): 6253, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716305

RESUMO

Deviations from Brownian motion leading to anomalous diffusion are found in transport dynamics from quantum physics to life sciences. The characterization of anomalous diffusion from the measurement of an individual trajectory is a challenging task, which traditionally relies on calculating the trajectory mean squared displacement. However, this approach breaks down for cases of practical interest, e.g., short or noisy trajectories, heterogeneous behaviour, or non-ergodic processes. Recently, several new approaches have been proposed, mostly building on the ongoing machine-learning revolution. To perform an objective comparison of methods, we gathered the community and organized an open competition, the Anomalous Diffusion challenge (AnDi). Participating teams applied their algorithms to a commonly-defined dataset including diverse conditions. Although no single method performed best across all scenarios, machine-learning-based approaches achieved superior performance for all tasks. The discussion of the challenge results provides practical advice for users and a benchmark for developers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA