Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 442(7101): 444-7, 2006 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-16871216

RESUMO

Deep-sea hydrothermal vents are important in global biogeochemical cycles, providing biological oases at the sea floor that are supported by the thermal and chemical flux from the Earth's interior. As hot, acidic and reduced hydrothermal fluids mix with cold, alkaline and oxygenated sea water, minerals precipitate to form porous sulphide-sulphate deposits. These structures provide microhabitats for a diversity of prokaryotes that exploit the geochemical and physical gradients in this dynamic ecosystem. It has been proposed that fluid pH in the actively venting sulphide structures is generally low (pH < 4.5), yet no extreme thermoacidophile has been isolated from vent deposits. Culture-independent surveys based on ribosomal RNA genes from deep-sea hydrothermal deposits have identified a widespread euryarchaeotal lineage, DHVE2 (deep-sea hydrothermal vent euryarchaeotic 2). Despite the ubiquity and apparent deep-sea endemism of DHVE2, cultivation of this group has been unsuccessful and thus its metabolism remains a mystery. Here we report the isolation and cultivation of a member of the DHVE2 group, which is an obligate thermoacidophilic sulphur- or iron-reducing heterotroph capable of growing from pH 3.3 to 5.8 and between 55 and 75 degrees C. In addition, we demonstrate that this isolate constitutes up to 15% of the archaeal population, providing evidence that thermoacidophiles may be key players in the sulphur and iron cycling at deep-sea vents.


Assuntos
Archaea/isolamento & purificação , Archaea/fisiologia , Temperatura Alta , Água do Mar , Ácidos , Archaea/classificação , Archaea/ultraestrutura , Fontes Termais , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Dados de Sequência Molecular , Oceanos e Mares , Filogenia , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Enxofre/metabolismo
2.
Environ Microbiol ; 8(5): 909-20, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16623747

RESUMO

A diffusely venting chimney spire from the East Pacific Rise (9 degrees N) was analysed by petrographic thin sectioning and 16S rRNA gene cloning and sequencing in parallel, to correlate microbial community composition with mineralogy and inferred in situ conditions within the chimney mineral matrix. Both approaches indicated a zonation of the chimney spire into distinct microhabitats for different bacteria and archaea. The thermal gradient inferred from the mineral composition and porosity of the chimney was consistent with the distribution of bacterial and archaeal phylotypes in the chimney matrix. A novel phylogenetic lineage of euryarchaeota was found that co-occurred with clones related to cultured hyperthermophilic archaea. A few phylotypes related to mesophilic bacteria were found in the hot core of the chimney, indicating that seawater influx during retrieval and cooling of these highly porous structures can entrain microorganisms into chimney layers that are not their native habitat.


Assuntos
Archaea/classificação , Bactérias/classificação , Sedimentos Geológicos/microbiologia , Archaea/genética , Archaea/crescimento & desenvolvimento , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Ecossistema , Oceano Pacífico , Filogenia , RNA Arqueal/análise , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA