Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Inorg Chem ; 58(9): 5733-5745, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-30997805

RESUMO

Knowledge of the crystal structure of a monometallic inorganic molecule is often sufficient to calculate its electronic structure and interpret its magnetic properties. Here we show that for a series of nine-coordinate lanthanide complexes based on the 1,4,7-tris[(6-carboxypyridin-2-yl)methyl]-1,4,7-triazacyclononane ligand, the electronic structure is hypersensitive to geometric structure and to the presence of noncoordinated lattice solvent, which renders the magnetic and spectroscopic properties very difficult to interpret. We explore possible explanations for the peculiar electron paramagnetic resonance (EPR) spectra and conclude that a number of entangled factors are at play across the samples. Hence, great care should be taken in the interpretation of EPR spectra for systems with small magnetic anisotropy, even when the molecular structure is known.

2.
Angew Chem Int Ed Engl ; 58(30): 10290-10294, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31140711

RESUMO

In two closely related series of eight-coordinate lanthanide complexes, a switch in the sign of the dominant ligand field parameter and striking variations in the sign, amplitude and orientation of the main component of the magnetic susceptibility tensor as the Ln3+ ion is permuted conspire to mask modest changes in NMR paramagnetic shifts, but are evident in Yb EPR and Eu emission spectra.

3.
J Am Chem Soc ; 139(40): 14166-14172, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28884581

RESUMO

Bleaney's long-standing theory of magnetic anisotropy has been employed with some success for many decades to explain paramagnetic NMR pseudocontact shifts, and has been the subject of many subsequent approximations. Here, we present a detailed experimental and theoretical investigation accounting for the anomalous solvent dependence of NMR shifts for a series of lanthanide(III) complexes, namely [LnL1] (Ln = Eu, Tb, Dy, Ho, Er, Tm, and Yb; L1: 1,4,7-tris[(6-carboxypyridin-2-yl)methyl]-1,4,7-triazacyclononane), taking into account the effect of subtle ligand flexibility on the electronic structure. We show that the anisotropy of the room temperature magnetic susceptibility tensor, which in turn affects the sign and magnitude of the pseudocontact chemical shift, is extremely sensitive to minimal structural changes in the first coordination sphere of L1. We show that DFT structural optimizations do not give accurate structural models, as assessed by the experimental chemical shifts, and thus we determine a magnetostructural correlation and employ this to evaluate the accurate solution structure for each [LnL1]. This approach allows us to explain the counterintuitive pseudocontact shift behavior, as well as a striking solvent dependence. These results have important consequences for the analysis and design of novel magnetic resonance shift and optical emission probes that are sensitive to the local solution environment and polarity.

4.
Inorg Chem ; 56(1): 378-394, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27977150

RESUMO

Inelastic neutron scattering (INS) has been used to investigate the crystal field (CF) magnetic excitations of the analogs of the most representative lanthanoid-polyoxometalate single-molecule magnet family: Na9[Ln(W5O18)2] (Ln = Nd, Tb, Ho, Er). Ab initio complete active space self-consistent field/restricted active space state interaction calculations, extended also to the Dy analog, show good agreement with the experimentally determined low-lying CF levels, with accuracy better in most cases than that reported for approaches based only on simultaneous fitting to CF models of magnetic or spectroscopic data for isostructural Ln families. In this work we demonstrate the power of a combined spectroscopic and computational approach. Inelastic neutron scattering has provided direct access to CF levels, which together with the magnetometry data, were employed to benchmark the ab initio results. The ab initio determined wave functions corresponding to the CF levels were in turn employed to assign the INS transitions allowed by selection rules and interpret the observed relative intensities of the INS peaks. Ultimately, we have been able to establish the relationship between the wave function composition of the CF split LnIII ground multiplets and the experimentally measured magnetic and spectroscopic properties for the various analogs of the Na9[Ln(W5O18)2] family.

5.
Inorg Chem ; 55(11): 5201-14, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27203849

RESUMO

Optimization of literature synthetic procedures has afforded, in moderate yield, homogeneous and crystalline samples of the five analogues Na11[{RE(OH2)}3CO3(PW9O34)2] (1-RE; RE = Y, Tb, Dy, Ho, and Er). Phase-transfer methods have allowed isolation of the mixed salts (Et4N)9Na2[{RE(OH2)}3CO3(PW9O34)2] (2-RE; RE = Y and Er). The isostructural polyanions in these compounds are comprised of a triangular arrangement of trivalent rare-earth ions bridged by a µ3-carbonate ligand and sandwiched between two trilacunary Keggin {PW9O34} polyoxometalate ligands. Alternating-current (ac) magnetic susceptibility studies of 1-Dy, 1-Er, and 2-Er reveal the onset of frequency dependence for the out-of-phase susceptibility in the presence of an applied magnetic field at the lowest measured temperatures. Inelastic neutron scattering (INS) spectra of 1-Ho and 1-Er exhibit transitions between the lowest-lying crystal-field (CF) split states of the respective J = 8 and (15)/2 ground-state spin-orbit multiplets of the Ho(III) and Er(III) ions. Complementary ab initio calculations performed for these two analogues allow excellent reproduction of the experimental magnetic susceptibility and low-temperature magnetization data and are in reasonable agreement with the experimental INS data. The ab initio calculations reveal that the slight difference in coordination environments of the three Ln(III) ions in each complex gives rise to differences in the CF splitting that are not insignificant. This theoretical result is consistent with the observation of multiple relaxation processes by ac magnetic susceptibility and the broadness of the measured INS peaks. The ab initio calculations also indicate substantial mixing of the MJ contributions to the CF split energy levels of each Ln(III) ion. Calculations indicate that the CF ground states of the Ho(III) centers in 1-Ho are predominantly comprised of contributions from small MJ, while those of the Er(III) centers in 1-Er are predominantly comprised of contributions from large MJ, giving rise to slow magnetic relaxation. Although no direct evidence for intramolecular RE···RE magnetic coupling is observed in either magnetic or INS studies, on the basis of the ab initio calculations, we find noncollinear magnetic axes in 1-Er that are coplanar with the erbium triangle and radially arranged with respect to the triangle's centroid; thus, we argue that the absence of magnetic coupling in this system arises from dipolar and antiferromagnetic superexchange interactions that cancel each other out.

6.
Inorg Chem ; 55(23): 12329-12347, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27934444

RESUMO

Eight new members of a family of mixed-metal (Mo,W) polyoxometalates (POMs) with amino acid ligands have been synthesized and investigated in the solid state and solution using multiple physical techniques. While the peripheral POM structural framework is conserved, the different analogues vary in nuclearity of the central metal-oxo core, overall redox state, metal composition, and identity of the zwitterionic α-amino acid ligands. Structural investigations reveal site-selective substitution of Mo for W, with a strong preference for Mo to occupy the central metal-oxo core. This core structural unit is a closed tetrametallic loop in the blue reduced species and an open trimetallic loop in the colorless oxidized analogues. Density functional theory calculations suggest the core as the favored site of reduction and reveal that the corresponding molecular orbital is much lower in energy for a tetra- versus trimetallic core. The reduced species are diamagnetic, each with a pair of strongly antiferromagnetically coupled MoV centers in the tetrametallic core, while in the oxidized complexes all Mo is hexavalent. Solution small-angle X-ray scattering and circular dichroism (CD) studies indicate that the hybrid POM is stable in aqueous solution on a time scale of days within defined concentration and pH ranges, with the stability enhanced by the presence of excess amino acid. The CD experiments also reveal that the amino acid ligands readily exchange with other α-amino acids, and it is possible to isolate the products of amino acid exchange, confirming retention of the POM framework. Cyclic voltammograms of the reduced species exhibit an irreversible oxidation process at relatively low potential, but an equivalent reductive process is not evident for the oxidized analogues. Despite their overall structural similarity, the oxidized and 2e-reduced hybrid POMs are not interconvertible because of the respective open- versus closed-loop arrangement in the central metal-oxo cores.

7.
Chemistry ; 20(43): 14102-11, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25204640

RESUMO

The first members of a promising new family of hybrid amino acid-polyoxometalates have emerged from a search for modular functional molecules. Incorporation of glycine (Gly) or norleucine (Nle) ligands into an yttrium-tungstoarsenate structural backbone, followed by crystallization with p-methylbenzylammonium (p-MeBzNH3(+)) cations, affords (p-MeBzNH3)6K2(GlyH)[As(III)4(Y(III)W(VI)3)W(VI)44Y(III)4O159(Gly)8(H2O)14]⋅47 H2O (1) and enantiomorphs (p-MeBzNH3)15(NleH)3[As(III)4(Mo(V)2Mo(VI)2)W(VI)44Y(III)4O160(Nle)9(H2O)11][As(III)4(Mo(VI)2W(VI)2)W(VI)44Y(III)4O160(Nle)9(H2O)11] (generically designated 2: L-Nle, 2 a; D-Nle, 2 b). An intensive structural, spectroscopic, electrochemical, magnetochemical and theoretical investigation has allowed the elucidation of site-selective metal substitution and photoreduction of the tetranuclear core of the hybrid polyanions. In the solid state, markedly different crystal packing is evident for the compounds, which indicates the role of noncovalent interactions involving the amino acid ligands. In solution, mass spectrometric and small-angle X-ray scattering studies confirm maintenance of the structure of the polyanions of 2, while circular dichroism demonstrates that the chirality is also maintained. The combination of all of these features in a single modular family emphasizes the potential of such hybrid polyoxometalates to provide nanoscale molecular materials with tunable properties.

8.
Chem Sci ; 14(15): 3990-4001, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37063800

RESUMO

Single-molecule magnets are promising candidates for data storage and quantum computing applications. A major barrier to their use is rapid magnetic relaxation and quantum decoherence due to thermal vibrations. Here we report a reanalysis of inelastic neutron scattering (INS) data of the candidate qubit Na9[Ho(W5O18)2]·35D2O, wherein we demonstrate for the first time that magnetic relaxation times and mechanisms can be directly observed as crystal field (CF) peak broadening in INS spectra of a lanthanoid molecular system. The magnetoelastic coupling between the lower energy CF states and phonons (lattice vibrations) is determined by the simultaneous measurement of CF excitations and the phonon density of states, encoded within the same INS experiment. This directly results in the determination of relaxation coupling pathways that occur in this molecule. Such information is invaluable for the further advancement of SMMs and to date has only been obtained from techniques performed in external magnetic fields. Additionally, we determine a relaxation rate of quantum-tunnelling of magnetisation that is consistent with previously measured EPR spectroscopy data.

9.
Chem Commun (Camb) ; 59(30): 4531-4534, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36975615

RESUMO

The hydration behaviour of coordination complexes is important for understanding their roles as bio-imaging agents. Determination of hydration is difficult, and various optical and NMR-based techniques have been used. Here we use EPR spectroscopy to unambiguously demonstrate that a t-butyl-pyridyl-functionalised ErIII DOTA derivative coordinates water, while its methylphosphinate analogue does not.

10.
Nat Chem ; 13(3): 243-248, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33318673

RESUMO

The discovery of ferrocene nearly 70 years ago marked the genesis of metallocene chemistry. Although the ferrocenium cation was discovered soon afterwards, a derivatized ferrocenium dication was only isolated in 2016 and the monoanion of ferrocene has only been observed in low-temperature electrochemical studies. Here we report the isolation of a derivatized ferrocene anion in the solid state as part of an isostructural family of 3d metallocenates, which consist of anionic complexes of a metal centre (manganese, iron or cobalt) sandwiched between two bulky Cpttt ligands (where Cpttt is {1,2,4-C5H2 tBu3}). These thermally and air-sensitive complexes decompose rapidly above -30 °C; however, we were able to characterize all metallocenates by a wide range of physical techniques and ab initio calculations. These data have allowed us to map the electronic structures of this metallocenate family, including an unexpected high-spin S = 3/2 ground state for the 19e- derivatized ferrocene anion.

11.
Dalton Trans ; 48(23): 8400-8409, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31114828

RESUMO

In three structurally related series of nine-coordinate lanthanide(iii) complexes (Ln = Tb, Dy, Ho, Er, Tm and Yb) based on triazacyclononane, solution NMR studies and DFT/CASSCF calculations have provided key information on the magnetic susceptibility anisotropy. Both experimental and computational approaches have revealed a poor correlation to Bleaney's theory of magnetic anisotropy. CASSCF calculations suggested that the magnetic susceptibility is very sensitive to small geometric variations within the first coordination sphere, whereas DFT analyses indicate that it is the thermal accessibility of low energy vibrational modes that may lead to distortion. Parallel NMRD and EPR studies on the three Gd(iii) complexes revealed good correspondence in estimating the electronic relaxation time. The Gd(iii) tris-pyridinecarboxylate complex possesses a very long electronic relaxation time making it a promising starting point for responsive gadolinium EPR probe design.

12.
Chem Sci ; 10(45): 10493-10502, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-32110338

RESUMO

Low coordinate metal complexes can exhibit superlative physicochemical properties, but this chemistry is challenging for the lanthanides (Ln) due to their tendency to maximize electrostatic contacts in predominantly ionic bonding regimes. Although a handful of Ln2+ complexes with only two monodentate ligands have been isolated, examples in the most common +3 oxidation state have remained elusive due to the greater electrostatic forces of Ln3+ ions. Here, we report bent Ln3+ complexes with two bis(silyl)amide ligands; in the solid state the Yb3+ analogue exhibits a crystal field similar to its three coordinate precursor rather than that expected for an axial system. This unanticipated finding is in opposition to the predicted electronic structure for two-coordinate systems, indicating that geometries can be more important than the Ln ion identity for dictating the magnetic ground states of low coordinate complexes; this is crucial transferable information for the construction of systems with enhanced magnetic properties.

13.
Chem Commun (Camb) ; 54(61): 8486-8489, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30003200

RESUMO

Crystallographic, emission and NMR studies of a series of C3-symmetric, nine-coordinate substituted pyridyl triazacyclononane Yb(iii) and Eu(iii) complexes reveal the impact of local solvation and ligand dipolar polarisability on ligand field strength, leading to dramatic variations in pseudocontact NMR shifts and emission spectral profiles, giving new guidance for responsive NMR and spectral probe design.

14.
Chem Commun (Camb) ; 52(10): 2091-4, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26690503

RESUMO

Ab initio calculations carried out on the Tb analogue of the single-molecule magnet family Na9[Ln(W5O18)2] (Ln = Nd, Gd, Ho and Er) have allowed interpretation of the inelastic neutron scattering spectra. The combined experimental and theoretical approach sheds new light on the sensitivity of the electronic structure of the Tb(III) ground and excited states to small structural distortions from axial symmetry, thus revealing the subtle relationship between molecular geometry and magnetic properties of the two isostructural species that comprise the sample.

15.
Chem Commun (Camb) ; (17): 1860-1, 2002 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-12271645

RESUMO

The synthesis, structural characterisation and preliminary magnetic studies of a Co12 wheel are reported; the magnetic investigations reveal that the electronic ground state has a spin S = 6, which corresponds to ferromagnetic interactions between the twelve Co(II) ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA