Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 366: 121731, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981260

RESUMO

In this study, four ecotoxicological tests on Vibrio fischeri bacteria, Sinapis alba L. (white mustard), Daphnia magna S. (daphnia's) and earthworms were performed for three types of aqueous slag (ladle, blast furnace and converter) leachates with two-grain sizes (<4 mm, <10 mm). Concentrations of toxic elements and concentrations of Cr(VI), Ca, Na, Al, and other ions were determined. The raw slags were analyzed using X-ray fluorescence spectroscopy (XRFS), and major substances were determined by X-ray powder diffraction (XRD). The aqueous slag leachates passed ecotoxicological tests and met the required criteria, showing no toxicity to Vibrio fischeri and complying with white mustard test criteria. According to the results of the ecotoxicity tests with daphnia, the blast furnace slag samples were not ecotoxic, while two other slag samples were found to be entirely compliant. Characterization of the slags showed that the effect of element/ion leachability and slag grain size is essential. Biplot principal component analysis (PCA) showed that grain size does not significantly affect the separation of individuals on the plane. A positive correlation on toxicity was found with pH, conductivity, calcium content, dissolved content, salinity and fluoride concentration, whereas a negative correlation was found with magnesium concentration, dissolved organic carbon and potassium concentration. The effective concentration at 50% inhibition (EC50) value for Vibrio fischeri correlated with the first dimension of bivariate assessment. In summary, it was found that the investigated slags can be effectively reused as they comply with regulations and do not endanger the environment.


Assuntos
Aliivibrio fischeri , Daphnia , Ecotoxicologia , Daphnia/efeitos dos fármacos , Animais , Aliivibrio fischeri/efeitos dos fármacos , Oligoquetos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Testes de Toxicidade , Sinapis/efeitos dos fármacos , Sinapis/química
2.
Mater Sci Eng C Mater Biol Appl ; 127: 112246, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34225885

RESUMO

Due to unique osteogenic properties, tricalcium phosphate (TCP) has gained relevance in the field of bone repair. The development of novel and rapid sintering routes is of particular interest since TCP undergoes to high-temperature phase transitions and is widely employed in osteoconductive coatings on thermally-sensitive metal substrates. In the present work, TCP bioceramics was innovatively obtained by Ultrafast High-temperature Sintering (UHS). Ca-deficient hydroxyapatite nano-powder produced by mechanochemical synthesis of mussel shell-derived calcium carbonate was used to prepare the green samples by uniaxial pressing. These were introduced within a graphite felt which was rapidly heated by an electrical current flow, reaching heating rates exceeding 1200 °C min-1. Dense (> 93%) ceramics were manufactured in less than 3 min using currents between 25 and 30 A. Both ß and α-TCP were detected in the sintered components with proportions depending on the applied current. Preliminary tests confirmed that the artifacts do not possess cytotoxic effects and possess mechanical properties similar to conventionally sintered materials. The overall results prove the applicability of UHS to bioceramics paving the way to new rapid processing routes for biomedical components.


Assuntos
Materiais Biocompatíveis , Fosfatos de Cálcio , Cerâmica , Temperatura Alta , Teste de Materiais , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA