Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 17(5)2017 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-28531146

RESUMO

Anxiety is a psychological problem that often emerges during the normal course of human life. The detection of anxiety often involves a physical exam and a self-reporting questionnaire. However, these approaches have limitations, as the data might lack reliability and consistency upon application to the same population over time. Furthermore, there might be varying understanding and interpretations of the particular question by the participant, which necessitating the approach of using biomarker-based measurement for stress diagnosis. The most prominent biomarker related to stress, hormone cortisol, plays a key role in the fight-or-flight situation, alters the immune response, and suppresses the digestive and the reproductive systems. We have taken the endeavour to review the available aptamer-based biosensor (aptasensor) for cortisol detection. The potential point-of-care diagnostic strategies that could be harnessed for the aptasensing of cortisol were also envisaged.


Assuntos
Sistemas Automatizados de Assistência Junto ao Leito , Técnicas Biossensoriais , Humanos , Hidrocortisona , Reprodutibilidade dos Testes , Estresse Psicológico , Inquéritos e Questionários
2.
Crit Rev Anal Chem ; 52(3): 577-592, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-32897761

RESUMO

Mortality level is worsening the situation worldwide thru blood diseases and greatly jeopardizes the human health with poor diagnostics. Due to the lack of successful generation of early diagnosis, the survival rate is currently lower. To overcome the present hurdle, new diagnostic methods have been choreographed for blood disease biomarkers analyses with the conjunction of ultra-small ideal gold nanohybrids. Gold-hybrids hold varieties of unique features, such as high biocompatibility, increased surface-to-volume ratio, less-toxicity, ease in electron transfer and have a greater localized surface plasmon resonance. Gold-nanocomposites can be physically hybrid on the sensor surface and functionalize with the biomolecules using appropriate chemical conjugations. Revolutionizing biosensor platform can be prominently linked for the nanocomposite applications in the current research on medical diagnosis. This review encloses the new developments in diagnosing blood biomarkers by utilizing the gold-nanohybrids. Further, the current state-of-the-art and the future envision with digital monitoring for facile telediagnosis were narrated.


Assuntos
Técnicas Biossensoriais , Doenças Hematológicas/diagnóstico , Nanopartículas Metálicas , Nanocompostos , Biomarcadores/sangue , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/tendências , Ouro/química , Doenças Hematológicas/mortalidade , Humanos , Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície
3.
Environ Sci Pollut Res Int ; 25(35): 35164-35175, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30328543

RESUMO

The objective of this study was to investigate several operating parameters, such as open circuit, different external resistance, pH, supporting electrolyte, and presence of aeration that might enhance the degradation rate as well as electricity generation of batik wastewater in solar photocatalytic fuel cell (PFC). The optimum degradation of batik wastewater was at pH 9 with external resistor 250 Ω. It was observed that open circuit of PFC showed only 17.2 ± 7.5% of removal efficiency, meanwhile the degradation rate of batik wastewater was enhanced to 31.9 ± 15.0% for closed circuit with external resistor 250 Ω. The decolorization of batik wastewater in the absence of photocatalyst due to the absorption of light irradiation by dye molecules and this process was known as photolysis. The degradation of batik wastewater increased as the external resistor value decreased. In addition, the degradation rate of batik wastewater also increased at pH 9 which was 74.4 ± 34.9% and at pH 3, its degradation rate was reduced to 19.4 ± 8.7%. The presence of aeration and sodium chloride as supporting electrolyte in batik wastewater also affected its degradation and electricity generation. The maximum absorbance of wavelength (λmax) of batik wastewater at 535 nm and chemical oxygen demand gradually decreased as increased in irradiation time; however, batik wastewater required prolonged irradiation time to fully degrade and mineralize in PFC system.


Assuntos
Fontes de Energia Bioelétrica , Eliminação de Resíduos Líquidos/métodos , Análise da Demanda Biológica de Oxigênio , Eletricidade , Eletrólitos , Fotólise , Luz Solar , Águas Residuárias/química
4.
Chemosphere ; 209: 935-943, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30114743

RESUMO

Reactive green 19, acid orange 7 and methylene blue are employed as the organic pollutants in this work. A photocatalytic fuel cell is constructed based on the idea of immobilizing zinc oxide onto zinc photoanode and platinum loaded carbon cathode, both evaluated under sunlight and ultraviolet irradiation, respectively. Influence of light and dye structures on the performance of photocatalytic fuel cell are examined. With reactive green 19, 93% and 86% of color removal are achieved after 8 h of photocatalytic fuel cell treatment under sunlight and ultraviolet irradiation, respectively. The decolorization rate of diazo reactive green 19 is higher than acid orange 7 (monoazo dye) when both dyes are treated by photocatalytic fuel cell under sunlight and ultraviolet irradiation, as the electron releasing groups (-NH-triazine) allow reactive green 19 easier to be oxidized. Comparatively, acid orange 7 is less favorable to be oxidized. The degradation of methylene blue is enhanced under sunlight irradiation due to the occurrence of self-sensitized photodegradation. When methylene blue is employed in the photocatalytic fuel cell under sunlight irradiation, the short circuit current (0.0129 mA cm-2) and maximum power density (0.0032 mW cm-2) of photocatalytic fuel cell greatly improved.


Assuntos
Corantes/química , Fotólise , Estrutura Molecular , Luz Solar , Raios Ultravioleta
5.
Chemosphere ; 194: 675-681, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29247929

RESUMO

In this study, a membraneless photocatalytic fuel cell with zinc oxide loaded carbon photoanode and platinum loaded carbon cathode was constructed to investigate the impact of dissolved oxygen on the mechanism of dye degradation and electricity generation of photocatalytic fuel cell. The photocatalytic fuel cell with high and low aeration rate, no aeration and nitrogen purged were investigated, respectively. The degradation rate of diazo dye Reactive Green 19 and the electricity generation was enhanced in photocatalytic fuel cell with higher dissolved oxygen concentration. However, the photocatalytic fuel cell was still able to perform 37% of decolorization in a slow rate (k = 0.033 h-1) under extremely low dissolved oxygen concentration (approximately 0.2 mg L-1) when nitrogen gas was introduced into the fuel cell throughout the 8 h. However, the change of the UV-Vis spectrum indicates that the intermediates of the dye could not be mineralized under insufficient dissolved oxygen level. In the aspect of electricity generation, the maximum short circuit current (0.0041 mA cm-2) and power density (0.00028 mW cm-2) of the air purged photocatalytic fuel cell was obviously higher than that with nitrogen purging (0.0015 mA cm-2 and 0.00008 mW cm-2).


Assuntos
Compostos Azo/química , Eletricidade , Eletrólise/métodos , Oxigênio/química , Carbono , Catálise , Eletrodos , Processos Fotoquímicos , Platina , Óxido de Zinco
6.
Chemosphere ; 202: 467-475, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29579681

RESUMO

The role of azo dye Reactive Black 5 (RB5) as an electron donor and/or electron acceptor could be distinguished in dual chamber of photocatalytic fuel cell (PFC). The introduction of RB5 in anode chamber increased the voltage generation in the system since degradation of RB5 might produce electrons which also would transfer through external circuit to the cathode chamber. The removal efficiency of RB5 with open and closed circuit was 8.5% and 13.6%, respectively and removal efficiency for open circuit was low due to the fact that recombination of electron-hole pairs might happen in anode chamber since without connection to the cathode, electron cannot be transferred. The degradation of RB5 in cathode chamber with absence of oxygen showed that electrons from anode chamber was accepted by dye molecules to break its azo bond. The presence of oxygen in cathode chamber would improve the oxygen reduction rate which occurred at Platinum-loaded carbon (Pt/C) cathode electrode. The Voc, Jsc and Pmax for different condition of ultrapure water at cathode chamber also affected their fill factor. The transportation of protons to cathode chamber through Nafion membrane could decrease the pH of ultrapure water in cathode chamber and undergo hydrogen evolution reaction in the absence of oxygen which then increased degradation rate of RB5 as well as its electricity generation.


Assuntos
Fontes de Energia Bioelétrica , Elétrons , Naftalenossulfonatos/química , Luz Solar , Compostos Azo/química , Eletricidade , Oxigênio/química
7.
Chemosphere ; 184: 112-119, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28586651

RESUMO

The photocatalytic fuel cell (PFC) system was developed in order to study the effect of several operating parameters in degradation of Reactive Black 5 (RB5) and its electricity generation. Light irradiation, initial dye concentration, aeration, pH and cathode electrode are the operating parameters that might give contribution in the efficiency of PFC system. The degradation of RB5 depends on the presence of light irradiation and solar light gives better performance to degrade the azo dye. The azo dye with low initial concentration decolorizes faster compared to higher initial concentration and presence of aeration in PFC system would enhance its performance. Reactive Black 5 rapidly decreased at higher pH due to the higher amount of OH generated at higher pH and Pt-loaded carbon (Pt/C) was more suitable to be used as cathode in PFC system compared to Cu foil and Fe foil. The rapid decolorization of RB5 would increase their voltage output and in addition, it would also increase their Voc, Jsc and Pmax. The breakage of azo bond and aromatic rings was confirmed through UV-Vis spectrum and COD analysis.


Assuntos
Fontes de Energia Elétrica , Eletricidade , Naftalenossulfonatos/química , Processos Fotoquímicos , Poluentes Químicos da Água/química , Compostos Azo/química , Corantes/química , Eletrodos , Luz , Luz Solar
8.
Chemosphere ; 166: 118-125, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27693872

RESUMO

Photocatalytic fuel cell (PFC) is a potential wastewater treatment technology that can generate electricity from the conversion of chemical energy of organic pollutants. An immobilized ZnO/Zn fabricated by sonication and heat attachment method was applied as the photoanode and Pt/C plate was used as the cathode of the PFC in this study. Factors that affect the decolorization efficiency and electricity generation of the PFC such as different initial dye concentrations and pH were investigated. Results revealed that the degradation of Reactive Green 19 (RG19) was enhanced in a closed circuit PFC compared with that of a opened circuit PFC. Almost 100% decolorization could be achieved in 8 h when 250 mL of 30 mg L-1 of RG19 was treated in a PFC without any supporting electrolyte. The highest short circuit current of 0.0427 mA cm-2 and maximum power density of 0.0102 mW cm-2 was obtained by PFC using 30 mg L-1 of RG19. The correlation between dye degradation, conductivity and voltage output were also investigated and discussed.


Assuntos
Compostos Azo/química , Corantes/química , Fontes de Energia Elétrica , Processos Fotoquímicos , Purificação da Água/métodos , Óxido de Zinco/química , Zinco/química , Compostos Azo/isolamento & purificação , Corantes/isolamento & purificação , Eletrodos , Águas Residuárias/química , Purificação da Água/instrumentação
9.
Biomed Res Int ; 2017: 1272193, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28280725

RESUMO

Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi) amylase is discussed along with its production methods from the laboratory to industrial scales.


Assuntos
Amilases/biossíntese , Bactérias/enzimologia , Biotecnologia/métodos , Fungos/enzimologia , Amilases/isolamento & purificação , Indústrias , Especificidade por Substrato
10.
Environ Sci Pollut Res Int ; 23(16): 16716-21, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27184147

RESUMO

This study investigated the effect of different supporting electrolyte (Na2SO4, MgSO4, NaCl) in degradation of Reactive Black 5 (RB5) and generation of electricity. Zinc oxide (ZnO) was immobilized onto carbon felt acted as photoanode, while Pt-coated carbon paper as photocathode was placed in a single chamber photocatalytic fuel cell, which then irradiated by UV lamp for 24 h. The degradation and mineralization of RB5 with 0.1 M NaCl rapidly decreased after 24-h irradiation time, followed by MgSO4, Na2SO4 and without electrolyte. The voltage outputs for Na2SO4, MgSO4 and NaCl were 908, 628 and 523 mV, respectively, after 24-h irradiation time; meanwhile, their short-circuit current density, J SC, was 1.3, 1.2 and 1.05 mA cm(-2), respectively. The power densities for Na2SO4, MgSO4 and NaCl were 0.335, 0.256 and 0.245 mW cm(-2), respectively. On the other hand, for without supporting electrolyte, the voltage output and short-circuit current density was 271.6 mV and 0.055 mA cm(-2), respectively. The supporting electrolyte NaCl showed greater performance in degradation of RB5 and generation of electricity due to the formation of superoxide radical anions which enhance the degradation of dye. The mineralization of RB5 with different supporting electrolyte was measured through spectrum analysis and reduction in COD concentration.


Assuntos
Eletricidade , Eletrólitos , Poluentes Ambientais/química , Naftalenossulfonatos/química , Processos Fotoquímicos , Eletrodos
11.
Nanoscale Res Lett ; 9(1): 429, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25221458

RESUMO

Nanostructured zinc oxide (ZnO) nanorods (NRs) with hexagonal wurtzite structures were synthesized using an easy and low-cost bottom-up hydrothermal growth technique. ZnO thin films were prepared with the use of four different solvents, namely, methanol, ethanol, isopropanol, and 2-methoxyethanol, and then used as seed layer templates for the subsequent growth of the ZnO NRs. The influences of the different solvents on the structural and optical properties were investigated through scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, and photoluminescence. The obtained X-ray diffraction patterns showed that the synthesized ZnO NRs were single crystals and exhibited a preferred orientation along the (002) plane. In addition, the calculated results from the specific models of the refractive index are consistent with the experimental data. The ZnO NRs that grew from the 2-methoxyethanol seeded layer exhibited the smallest grain size (39.18 nm), largest diffracted intensities on the (002) plane, and highest bandgap (3.21 eV).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA