Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Semin Immunol ; 29: 2-13, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28736160

RESUMO

Macrophage presence and phenotype are critical determinants of the healing response following injury. Downregulation of the pro-inflammatory macrophage phenotype has been associated with the therapeutic use of bioscaffolds composed of extracellular matrix (ECM), but phenotypic characterization of macrophages has typically been limited to small number of non-specific cell surface markers or expressed proteins. The present study determined the response of both primary murine bone marrow derived macrophages (BMDM) and a transformed human mononuclear cell line (THP-1 cells) to degradation products of two different, commonly used ECM bioscaffolds; urinary bladder matrix (UBM-ECM) and small intestinal submucosa (SIS-ECM). Quantified cell responses included gene expression, protein expression, commonly used cell surface markers, and functional assays. Results showed that the phenotype elicited by ECM exposure (MECM) is distinct from both the classically activated IFNγ+LPS phenotype and the alternatively activated IL-4 phenotype. Furthermore, the BMDM and THP-1 macrophages responded differently to identical stimuli, and UBM-ECM and SIS-ECM bioscaffolds induced similar, yet distinct phenotypic profiles. The results of this study not only characterized an MECM phenotype that has anti-inflammatory traits but also showed the risks and challenges of making conclusions about the role of macrophage mediated events without consideration of the source of macrophages and the limitations of individual cell markers.


Assuntos
Biomimética , Matriz Extracelular/metabolismo , Macrófagos/fisiologia , Alicerces Teciduais , Animais , Materiais Biocompatíveis/metabolismo , Células da Medula Óssea/fisiologia , Diferenciação Celular , Matriz Extracelular/imunologia , Humanos , Mamíferos , Fenótipo , Cicatrização
2.
Cancer Res ; 80(23): 5317-5329, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33023944

RESUMO

Lungs are one of the main sites of breast cancer metastasis. The metastatic microenvironment is essential to facilitate growth of disseminated tumor cells. Cancer-associated fibroblasts (CAF) are prominent players in the microenvironment of breast cancer. However, their role in the formation of a permissive metastatic niche is unresolved. Here we show that IL33 is upregulated in metastases-associated fibroblasts in mouse models of spontaneous breast cancer metastasis and in patients with breast cancer with lung metastasis. Upregulation of IL33 instigated type 2 inflammation in the metastatic microenvironment and mediated recruitment of eosinophils, neutrophils, and inflammatory monocytes to lung metastases. Importantly, targeting of IL33 in vivo resulted in inhibition of lung metastasis and significant attenuation of immune cell recruitment and type 2 immunity. These findings demonstrate a key function of IL33 in facilitating lung metastatic relapse by modulating the immune microenvironment. Our study shows a novel interaction axis between CAF and immune cells and reveals the central role of CAF in establishing a hospitable inflammatory niche in lung metastasis. SIGNIFICANCE: This study elucidates a novel role for fibroblast-derived IL33 in facilitating breast cancer lung metastasis by modifying the immune microenvironment at the metastatic niche toward type 2 inflammation.


Assuntos
Neoplasias da Mama/patologia , Fibroblastos/metabolismo , Interleucina-33/metabolismo , Microambiente Tumoral/imunologia , Animais , Neoplasias da Mama/imunologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Feminino , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/antagonistas & inibidores , Interleucina-33/imunologia , Pulmão/citologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Células Estromais/metabolismo , Células Estromais/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
3.
Tissue Eng Part A ; 23(21-22): 1283-1294, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28580875

RESUMO

The early macrophage response to biomaterials has been shown to be a critical and predictive determinant of downstream outcomes. When properly prepared, bioscaffolds composed of mammalian extracellular matrix (ECM) have been shown to promote a transition in macrophage behavior from a proinflammatory to a regulatory/anti-inflammatory phenotype, which in turn has been associated with constructive and functional tissue repair. The mechanism by which ECM bioscaffolds promote this phenotypic transition, however, is poorly understood. The present study shows that matrix-bound nanovesicles (MBV), a component of ECM bioscaffolds, are capable of recapitulating the macrophage activation effects of the ECM bioscaffold from which they are derived. MBV isolated from two different source tissues, porcine urinary bladder and small intestinal submucosa, were found to be enriched in miRNA125b-5p, 143-3p, and 145-5p. Inhibition of these miRNAs within macrophages was associated with a gene and protein expression profile more consistent with a proinflammatory rather than an anti-inflammatory/regulatory phenotype. MBV and their associated miRNA cargo appear to play a significant role in mediating the effects of ECM bioscaffolds on macrophage phenotype.


Assuntos
Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , Nanopartículas/química , Animais , Vesículas Extracelulares/ultraestrutura , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Camundongos , MicroRNAs/metabolismo , Óxido Nítrico/biossíntese , Fagocitose , Fenótipo , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA